
Slixmpp Documentation
Release 1.5

Nathan Fritz, Lance Stout

May 04, 2020

Contents

1 Here’s your first Slixmpp Bot: 3

2 To read if you come from SleekXMPP 5

3 Getting Started (with Examples) 9

4 Tutorials, FAQs, and How To Guides 35

5 Slixmpp Architecture and Design 55

6 API Reference 59

7 Additional Info 103

8 SleekXMPP Credits 107

Python Module Index 109

Index 111

i

ii

Slixmpp Documentation, Release 1.5

Get the Code

The latest source code for Slixmpp may be found on the Git repo.

git clone https://lab.louiz.org/poezio/slixmpp

An XMPP chat room is available for discussing and getting help with slixmpp.

Chat slixmpp@muc.poez.io

Reporting bugs You can report bugs at http://lab.louiz.org/poezio/slixmpp/issues.

Note: slixmpp is a friendly fork of SleekXMPP which goal is to use asyncio instead of threads to handle networking.
See Differences from SleekXMPP.

Slixmpp is an MIT licensed XMPP library for Python 3.7+,

Slixmpp’s design goals and philosphy are:

Low number of dependencies Installing and using Slixmpp should be as simple as possible, without having to deal
with long dependency chains.

As part of reducing the number of dependencies, some third party modules are included with Slixmpp in the
thirdparty directory. Imports from this module first try to import an existing installed version before loading
the packaged version, when possible.

Every XEP as a plugin Following Python’s “batteries included” approach, the goal is to provide support for all cur-
rently active XEPs (final and draft). Since adding XEP support is done through easy to create plugins, the hope
is to also provide a solid base for implementing and creating experimental XEPs.

Rewarding to work with As much as possible, Slixmpp should allow things to “just work” using sensible defaults
and appropriate abstractions. XML can be ugly to work with, but it doesn’t have to be that way.

Contents 1

https://lab.louiz.org/poezio/slixmpp
xmpp:slixmpp@muc.poez.io?join
http://lab.louiz.org/poezio/slixmpp/issues
https://github.com/fritzy/SleekXMPP

Slixmpp Documentation, Release 1.5

2 Contents

CHAPTER 1

Here’s your first Slixmpp Bot:

import asyncio
import logging

from slixmpp import ClientXMPP

class EchoBot(ClientXMPP):

def __init__(self, jid, password):
ClientXMPP.__init__(self, jid, password)

self.add_event_handler("session_start", self.session_start)
self.add_event_handler("message", self.message)

If you wanted more functionality, here's how to register plugins:
self.register_plugin('xep_0030') # Service Discovery
self.register_plugin('xep_0199') # XMPP Ping

Here's how to access plugins once you've registered them:
self['xep_0030'].add_feature('echo_demo')

def session_start(self, event):
self.send_presence()
self.get_roster()

Most get_*/set_* methods from plugins use Iq stanzas, which
are sent asynchronously. You can almost always provide a
callback that will be executed when the reply is received.

def message(self, msg):
if msg['type'] in ('chat', 'normal'):

msg.reply("Thanks for sending\n%(body)s" % msg).send()

(continues on next page)

3

Slixmpp Documentation, Release 1.5

(continued from previous page)

if __name__ == '__main__':
Ideally use optparse or argparse to get JID,
password, and log level.

logging.basicConfig(level=logging.DEBUG,
format='%(levelname)-8s %(message)s')

xmpp = EchoBot('somejid@example.com', 'use_getpass')
xmpp.connect()
xmpp.process()

4 Chapter 1. Here’s your first Slixmpp Bot:

CHAPTER 2

To read if you come from SleekXMPP

2.1 Differences from SleekXMPP

Python 3.7+ only slixmpp will work on python 3.7 and above. It may work with previous versions but we provide no
guarantees.

Stanza copies The same stanza object is given through all the handlers; a handler that edits the stanza object should
make its own copy.

Replies Because stanzas are not copied anymore, Stanza.reply() calls (for IQs, Messages, etc) now return a
new object instead of editing the stanza object in-place.

Block and threaded arguments All the functions that had a threaded= or block= argument do not have it any-
more. Also, Iq.send() does not block anymore.

Coroutine facilities See Using asyncio

If an event handler is a coroutine, it will be called asynchronously in the event loop instead of inside the event
caller.

A CoroutineCallback class has been added to create coroutine stream handlers, which will be also handled in
the event loop.

The Iq object’s send() method now always return a Future which result will be set to the IQ reply when it
is received, or to None if the IQ is not of type get or set.

Many plugins (WIP) calls which retrieve information also return the same future.

Architectural differences slixmpp does not have an event queue anymore, and instead processes handlers directly
after receiving the XML stanza.

Note: If you find something that doesn’t work but should, please report it.

5

Slixmpp Documentation, Release 1.5

2.2 Using asyncio

2.2.1 Block on IQ sending

Iq.send() now returns a Future so you can easily block with:

result = yield from iq.send()

Warning: If the reply is an IQ with an error type, this will raise an IqError, and if it timeouts, it will raise
an IqTimeout. Don’t forget to catch it.

You can still use callbacks instead.

2.2.2 XEP plugin integration

The same changes from the SleekXMPP API apply, so you can do:

iq_info = yield from self.xmpp['xep_0030'].get_info(jid)

But the following will only return a Future:

iq_info = self.xmpp['xep_0030'].get_info(jid)

2.2.3 Callbacks, Event Handlers, and Stream Handlers

IQ callbacks and Event Handlers can be coroutine functions; in this case, they will be scheduled in the event loop
using asyncio.async() and not ran immediately.

A CoroutineCallback class has been added as well for Stream Handlers, which will use asyncio.async()
to schedule the callback.

2.2.4 Running the event loop

XMLStream.process() is only a thin wrapper on top of loop.run_forever() (if timeout is provided
then it will only run for this amount of time, and if forever is False it will run until disconnection).

Therefore you can handle the event loop in any way you like instead of using process().

2.2.5 Examples

Blocking until the session is established

This code blocks until the XMPP session is fully established, which can be useful to make sure external events aren’t
triggering XMPP callbacks while everything is not ready.

import asyncio, slixmpp

client = slixmpp.ClientXMPP('jid@example', 'password')
client.connected_event = asyncio.Event()

(continues on next page)

6 Chapter 2. To read if you come from SleekXMPP

Slixmpp Documentation, Release 1.5

(continued from previous page)

callback = lambda _: client.connected_event.set()
client.add_event_handler('session_start', callback)
client.connect()
loop.run_until_complete(event.wait())
do some other stuff before running the event loop, e.g.
loop.run_until_complete(httpserver.init())
client.process()

Use with other asyncio-based libraries

This code interfaces with aiohttp to retrieve two pages asynchronously when the session is established, and then send
the HTML content inside a simple <message>.

import asyncio, aiohttp, slixmpp

@asyncio.coroutine
def get_pythonorg(event):

req = yield from aiohttp.request('get', 'http://www.python.org')
text = yield from req.text
client.send_message(mto='jid2@example', mbody=text)

@asyncio.coroutine
def get_asyncioorg(event):

req = yield from aiohttp.request('get', 'http://www.asyncio.org')
text = yield from req.text
client.send_message(mto='jid3@example', mbody=text)

client = slixmpp.ClientXMPP('jid@example', 'password')
client.add_event_handler('session_start', get_pythonorg)
client.add_event_handler('session_start', get_asyncioorg)
client.connect()
client.process()

Blocking Iq

This client checks (via XEP-0092) the software used by every entity it receives a message from. After this, it sends a
message to a specific JID indicating its findings.

import asyncio, slixmpp

class ExampleClient(slixmpp.ClientXMPP):
def __init__(self, *args, **kwargs):

slixmpp.ClientXMPP.__init__(self, *args, **kwargs)
self.register_plugin('xep_0092')
self.add_event_handler('message', self.on_message)

@asyncio.coroutine
def on_message(self, event):

You should probably handle IqError and IqTimeout exceptions here
but this is an example.
version = yield from self['xep_0092'].get_version(message['from'])
text = "%s sent me a message, he runs %s" % (message['from'],

version['software_version']['name
→˓'])

(continues on next page)

2.2. Using asyncio 7

Slixmpp Documentation, Release 1.5

(continued from previous page)

self.send_message(mto='master@example.tld', mbody=text)

client = ExampleClient('jid@example', 'password')
client.connect()
client.process()

8 Chapter 2. To read if you come from SleekXMPP

CHAPTER 3

Getting Started (with Examples)

3.1 Slixmpp Quickstart - Echo Bot

Note: If you have any issues working through this quickstart guide join the chat room at slixmpp@muc.poez.io.

If you have not yet installed Slixmpp, do so now by either checking out a version with Git.

As a basic starting project, we will create an echo bot which will reply to any messages sent to it. We will also go
through adding some basic command line configuration for enabling or disabling debug log outputs and setting the
username and password for the bot.

For the command line options processing, we will use the built-in optparse module and the getpass module for
reading in passwords.

3.1.1 TL;DR Just Give Me the Code

As you wish: the completed example.

3.1.2 Overview

To get started, here is a brief outline of the structure that the final project will have:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import sys
import asyncio
import logging
import getpass
from optparse import OptionParser

(continues on next page)

9

xmpp:slixmpp@muc.poez.io?join
https://lab.louiz.org/poezio/slixmpp

Slixmpp Documentation, Release 1.5

(continued from previous page)

import slixmpp

'''Here we will create out echo bot class'''

if __name__ == '__main__':
'''Here we will configure and read command line options'''

'''Here we will instantiate our echo bot'''

'''Finally, we connect the bot and start listening for messages'''

3.1.3 Creating the EchoBot Class

There are three main types of entities within XMPP — servers, components, and clients. Since our echo bot will only
be responding to a few people, and won’t need to remember thousands of users, we will use a client connection. A
client connection is the same type that you use with your standard IM client such as Pidgin or Psi.

Slixmpp comes with a ClientXMPP class which we can extend to add our message echoing feature. ClientXMPP
requires the parameters jid and password, so we will let our EchoBot class accept those as well.

class EchoBot(slixmpp.ClientXMPP):

def __init__(self, jid, password):
super().__init__(jid, password)

Handling Session Start

The XMPP spec requires clients to broadcast its presence and retrieve its roster (buddy list) once it connects and
establishes a session with the XMPP server. Until these two tasks are completed, some servers may not deliver or send
messages or presence notifications to the client. So we now need to be sure that we retrieve our roster and send an
initial presence once the session has started. To do that, we will register an event handler for the session_start event.

def __init__(self, jid, password):
super().__init__(jid, password)

self.add_event_handler('session_start', self.start)

Since we want the method self.start to execute when the session_start event is triggered, we also need to define
the self.start handler.

def start(self, event):
self.send_presence()
self.get_roster()

Warning: Not sending an initial presence and retrieving the roster when using a client instance can prevent your
program from receiving presence notifications or messages depending on the XMPP server you have chosen.

Our event handler, like every event handler, accepts a single parameter which typically is the stanza that was received
that caused the event. In this case, event will just be an empty dictionary since there is no associated data.

10 Chapter 3. Getting Started (with Examples)

Slixmpp Documentation, Release 1.5

Our first task of sending an initial presence is done using send_presence. Calling send_presence without any
arguments will send the simplest stanza allowed in XMPP:

<presence />

The second requirement is fulfilled using get_roster, which will send an IQ stanza requesting the roster to the
server and then wait for the response. You may be wondering what get_roster returns since we are not saving any
return value. The roster data is saved by an internal handler to self.roster, and in the case of a ClientXMPP
instance to self.client_roster. (The difference between self.roster and self.client_roster is
that self.roster supports storing roster information for multiple JIDs, which is useful for components, whereas
self.client_roster stores roster data for just the client’s JID.)

It is possible for a timeout to occur while waiting for the server to respond, which can happen if the network is
excessively slow or the server is no longer responding. In that case, an IQTimeout is raised. Similarly, an IQError
exception can be raised if the request contained bad data or requested the roster for the wrong user. In either case, you
can wrap the get_roster() call in a try/except block to retry the roster retrieval process.

The XMPP stanzas from the roster retrieval process could look like this:

<iq type="get">
<query xmlns="jabber:iq:roster" />

</iq>

<iq type="result" to="echobot@example.com" from="example.com">
<query xmlns="jabber:iq:roster">
<item jid="friend@example.com" subscription="both" />

</query>
</iq>

Responding to Messages

Now that an EchoBot instance handles session_start, we can begin receiving and responding to messages. Now we
can register a handler for the message event that is raised whenever a messsage is received.

def __init__(self, jid, password):
super().__init__(jid, password)

self.add_event_handler('session_start', self.start)
self.add_event_handler('message', self.message)

The message event is fired whenever a <message /> stanza is received, including for group chat messages, errors,
etc. Properly responding to messages thus requires checking the 'type' interface of the message stanza object. For
responding to only messages addressed to our bot (and not from a chat room), we check that the type is either normal
or chat. (Other potential types are error, headline, and groupchat.)

def message(self, msg):
if msg['type'] in ('normal', 'chat'):

msg.reply("Thanks for sending:\n%s" % msg['body']).send()

Let’s take a closer look at the .reply()method used above. For message stanzas, .reply() accepts the parameter
body (also as the first positional argument), which is then used as the value of the <body /> element of the message.
Setting the appropriate to JID is also handled by .reply().

Another way to have sent the reply message would be to use send_message, which is a convenience method for
generating and sending a message based on the values passed to it. If we were to use this method, the above code
would look as so:

3.1. Slixmpp Quickstart - Echo Bot 11

Slixmpp Documentation, Release 1.5

def message(self, msg):
if msg['type'] in ('normal', 'chat'):

self.send_message(mto=msg['from'],
mbody='Thanks for sending:\n%s' % msg['body'])

Whichever method you choose to use, the results in action will look like this:

<message to="echobot@example.com" from="someuser@example.net" type="chat">
<body>Hej!</body>

</message>

<message to="someuser@example.net" type="chat">
<body>Thanks for sending:
Hej!</body>

</message>

Note: XMPP does not require stanzas sent by a client to include a from attribute, and leaves that responsibility to
the XMPP server. However, if a sent stanza does include a from attribute, it must match the full JID of the client or
some servers will reject it. Slixmpp thus leaves out the from attribute when replying using a client connection.

3.1.4 Command Line Arguments and Logging

While this isn’t part of Slixmpp itself, we do want our echo bot program to be able to accept a JID and password from
the command line instead of hard coding them. We will use the optparse module for this, though there are several
alternative methods, including the newer argparse module.

We want to accept three parameters: the JID for the echo bot, its password, and a flag for displaying the debugging
logs. We also want these to be optional parameters, since passing a password directly through the command line can
be a security risk.

if __name__ == '__main__':
optp = OptionParser()

optp.add_option('-d', '--debug', help='set logging to DEBUG',
action='store_const', dest='loglevel',
const=logging.DEBUG, default=logging.INFO)

optp.add_option("-j", "--jid", dest="jid",
help="JID to use")

optp.add_option("-p", "--password", dest="password",
help="password to use")

opts, args = optp.parse_args()

if opts.jid is None:
opts.jid = raw_input("Username: ")

if opts.password is None:
opts.password = getpass.getpass("Password: ")

Since we included a flag for enabling debugging logs, we need to configure the logging module to behave accord-
ingly.

if __name__ == '__main__':

(continues on next page)

12 Chapter 3. Getting Started (with Examples)

Slixmpp Documentation, Release 1.5

(continued from previous page)

.. option parsing from above ..

logging.basicConfig(level=opts.loglevel,
format='%(levelname)-8s %(message)s')

3.1.5 Connecting to the Server and Processing

There are three steps remaining until our echo bot is complete:

1. We need to instantiate the bot.

2. The bot needs to connect to an XMPP server.

3. We have to instruct the bot to start running and processing messages.

Creating the bot is straightforward, but we can also perform some configuration at this stage. For example, let’s say
we want our bot to support service discovery and pings:

if __name__ == '__main__':

.. option parsing and logging steps from above

xmpp = EchoBot(opts.jid, opts.password)
xmpp.register_plugin('xep_0030') # Service Discovery
xmpp.register_plugin('xep_0199') # Ping

If the EchoBot class had a hard dependency on a plugin, we could register that plugin in the EchoBot.__init__
method instead.

Note: If you are using the OpenFire server, you will need to include an additional configuration step. OpenFire
supports a different version of SSL than what most servers and Slixmpp support.

import ssl
xmpp.ssl_version = ssl.PROTOCOL_SSLv3

Now we’re ready to connect and begin echoing messages. If you have the package aiodns installed, then the
slixmpp.clientxmpp.ClientXMPP() method will perform a DNS query to find the appropriate server to
connect to for the given JID. If you do not have aiodns, then Slixmpp will attempt to connect to the hostname used
by the JID, unless an address tuple is supplied to slixmpp.clientxmpp.ClientXMPP().

if __name__ == '__main__':

.. option parsing & echo bot configuration

if xmpp.connect():
xmpp.process(block=True)

else:
print('Unable to connect')

To begin responding to messages, you’ll see we called slixmpp.basexmpp.BaseXMPP.process() which
will start the event handling, send queue, and XML reader threads. It will also call the slixmpp.plugins.
base.BasePlugin.post_init() method on all registered plugins. By passing block=True to slixmpp.
basexmpp.BaseXMPP.process() we are running the main processing loop in the main thread of execution.
The slixmpp.basexmpp.BaseXMPP.process() call will not return until after Slixmpp disconnects. If you

3.1. Slixmpp Quickstart - Echo Bot 13

http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0199.html

Slixmpp Documentation, Release 1.5

need to run the client in the background for another program, use block=False to spawn the processing loop in its
own thread.

Note: Before 1.0, controlling the blocking behaviour of slixmpp.basexmpp.BaseXMPP.process() was
done via the threaded argument. This arrangement was a source of confusion because some users interpreted that
as controlling whether or not Slixmpp used threads at all, instead of how the processing loop itself was spawned.

The statements xmpp.process(threaded=False) and xmpp.process(block=True) are equivalent.

3.1.6 The Final Product

Here then is what the final result should look like after working through the guide above. The code can also be found
in the Slixmpp examples directory.

You can run the code using:

python echobot.py -d -j echobot@example.com

which will prompt for the password and then begin echoing messages. To test, open your regular IM client and start a
chat with the echo bot. Messages you send to it should be mirrored back to you. Be careful if you are using the same
JID for the echo bot that you also have logged in with another IM client. Messages could be routed to your IM client
instead of the bot.

#!/usr/bin/env python3
-*- coding: utf-8 -*-

"""
Slixmpp: The Slick XMPP Library
Copyright (C) 2010 Nathanael C. Fritz
This file is part of Slixmpp.

See the file LICENSE for copying permission.
"""

import logging
from getpass import getpass
from argparse import ArgumentParser

import slixmpp

class EchoBot(slixmpp.ClientXMPP):

"""
A simple Slixmpp bot that will echo messages it
receives, along with a short thank you message.
"""

def __init__(self, jid, password):
slixmpp.ClientXMPP.__init__(self, jid, password)

The session_start event will be triggered when
the bot establishes its connection with the server
and the XML streams are ready for use. We want to
listen for this event so that we we can initialize

(continues on next page)

14 Chapter 3. Getting Started (with Examples)

https://lab.louiz.org/poezio/slixmpp/tree/master/examples

Slixmpp Documentation, Release 1.5

(continued from previous page)

our roster.
self.add_event_handler("session_start", self.start)

The message event is triggered whenever a message
stanza is received. Be aware that that includes
MUC messages and error messages.
self.add_event_handler("message", self.message)

async def start(self, event):
"""
Process the session_start event.

Typical actions for the session_start event are
requesting the roster and broadcasting an initial
presence stanza.

Arguments:
event -- An empty dictionary. The session_start

event does not provide any additional
data.

"""
self.send_presence()
await self.get_roster()

def message(self, msg):
"""
Process incoming message stanzas. Be aware that this also
includes MUC messages and error messages. It is usually
a good idea to check the messages's type before processing
or sending replies.

Arguments:
msg -- The received message stanza. See the documentation

for stanza objects and the Message stanza to see
how it may be used.

"""
if msg['type'] in ('chat', 'normal'):

msg.reply("Thanks for sending\n%(body)s" % msg).send()

if __name__ == '__main__':
Setup the command line arguments.
parser = ArgumentParser(description=EchoBot.__doc__)

Output verbosity options.
parser.add_argument("-q", "--quiet", help="set logging to ERROR",

action="store_const", dest="loglevel",
const=logging.ERROR, default=logging.INFO)

parser.add_argument("-d", "--debug", help="set logging to DEBUG",
action="store_const", dest="loglevel",
const=logging.DEBUG, default=logging.INFO)

JID and password options.
parser.add_argument("-j", "--jid", dest="jid",

help="JID to use")
parser.add_argument("-p", "--password", dest="password",

help="password to use")
(continues on next page)

3.1. Slixmpp Quickstart - Echo Bot 15

Slixmpp Documentation, Release 1.5

(continued from previous page)

args = parser.parse_args()

Setup logging.
logging.basicConfig(level=args.loglevel,

format='%(levelname)-8s %(message)s')

if args.jid is None:
args.jid = input("Username: ")

if args.password is None:
args.password = getpass("Password: ")

Setup the EchoBot and register plugins. Note that while plugins may
have interdependencies, the order in which you register them does
not matter.
xmpp = EchoBot(args.jid, args.password)
xmpp.register_plugin('xep_0030') # Service Discovery
xmpp.register_plugin('xep_0004') # Data Forms
xmpp.register_plugin('xep_0060') # PubSub
xmpp.register_plugin('xep_0199') # XMPP Ping

Connect to the XMPP server and start processing XMPP stanzas.
xmpp.connect()
xmpp.process()

3.2 Sign in, Send a Message, and Disconnect

Note: If you have any issues working through this quickstart guide join the chat room at slixmpp@muc.poez.io.

A common use case for Slixmpp is to send one-off messages from time to time. For example, one use case could be
sending out a notice when a shell script finishes a task.

We will create our one-shot bot based on the pattern explained in Slixmpp Quickstart - Echo Bot. To start, we create a
client class based on ClientXMPP and register a handler for the session_start event. We will also accept parameters
for the JID that will receive our message, and the string content of the message.

import slixmpp

class SendMsgBot(slixmpp.ClientXMPP):

def __init__(self, jid, password, recipient, msg):
super().__init__(jid, password)

self.recipient = recipient
self.msg = msg

self.add_event_handler('session_start', self.start)

def start(self, event):
self.send_presence()
self.get_roster()

16 Chapter 3. Getting Started (with Examples)

xmpp:slixmpp@muc.poez.io?join

Slixmpp Documentation, Release 1.5

Note that as in Slixmpp Quickstart - Echo Bot, we need to include send an initial presence and request the roster. Next,
we want to send our message, and to do that we will use send_message.

def start(self, event):
self.send_presence()
self.get_roster()

self.send_message(mto=self.recipient, mbody=self.msg)

Finally, we need to disconnect the client using disconnect. Now, sent stanzas are placed in a queue to pass them to
the send thread. disconnect by default will wait for an acknowledgement from the server for at least 2.0 seconds.
This time is configurable with the wait parameter. If 0.0 is passed for wait, disconnectwill not close the connection
gracefully.

def start(self, event):
self.send_presence()
self.get_roster()

self.send_message(mto=self.recipient, mbody=self.msg)

self.disconnect()

Warning: If you happen to be adding stanzas to the send queue faster than the send thread can process them, then
disconnect() will block and not disconnect.

3.2.1 Final Product

The final step is to create a small runner script for initialising our SendMsgBot class and adding some basic con-
figuration options. By following the basic boilerplate pattern in Slixmpp Quickstart - Echo Bot, we arrive at the code
below. To experiment with this example, you can use:

python send_client.py -d -j oneshot@example.com -t someone@example.net -m "This is a
→˓message"

which will prompt for the password and then log in, send your message, and then disconnect. To test, open your
regular IM client with the account you wish to send messages to. When you run the send_client.py example and
instruct it to send your IM client account a message, you should receive the message you gave. If the two JIDs you use
also have a mutual presence subscription (they’re on each other’s buddy lists) then you will also see the SendMsgBot
client come online and then go offline.

#!/usr/bin/env python3
-*- coding: utf-8 -*-

"""
Slixmpp: The Slick XMPP Library
Copyright (C) 2010 Nathanael C. Fritz
This file is part of Slixmpp.

See the file LICENSE for copying permission.
"""

import logging
from getpass import getpass
from argparse import ArgumentParser

(continues on next page)

3.2. Sign in, Send a Message, and Disconnect 17

Slixmpp Documentation, Release 1.5

(continued from previous page)

import slixmpp

class SendMsgBot(slixmpp.ClientXMPP):

"""
A basic Slixmpp bot that will log in, send a message,
and then log out.
"""

def __init__(self, jid, password, recipient, message):
slixmpp.ClientXMPP.__init__(self, jid, password)

The message we wish to send, and the JID that
will receive it.
self.recipient = recipient
self.msg = message

The session_start event will be triggered when
the bot establishes its connection with the server
and the XML streams are ready for use. We want to
listen for this event so that we we can initialize
our roster.
self.add_event_handler("session_start", self.start)

async def start(self, event):
"""
Process the session_start event.

Typical actions for the session_start event are
requesting the roster and broadcasting an initial
presence stanza.

Arguments:
event -- An empty dictionary. The session_start

event does not provide any additional
data.

"""
self.send_presence()
await self.get_roster()

self.send_message(mto=self.recipient,
mbody=self.msg,
mtype='chat')

self.disconnect()

if __name__ == '__main__':
Setup the command line arguments.
parser = ArgumentParser(description=SendMsgBot.__doc__)

Output verbosity options.
parser.add_argument("-q", "--quiet", help="set logging to ERROR",

action="store_const", dest="loglevel",
const=logging.ERROR, default=logging.INFO)

(continues on next page)

18 Chapter 3. Getting Started (with Examples)

Slixmpp Documentation, Release 1.5

(continued from previous page)

parser.add_argument("-d", "--debug", help="set logging to DEBUG",
action="store_const", dest="loglevel",
const=logging.DEBUG, default=logging.INFO)

JID and password options.
parser.add_argument("-j", "--jid", dest="jid",

help="JID to use")
parser.add_argument("-p", "--password", dest="password",

help="password to use")
parser.add_argument("-t", "--to", dest="to",

help="JID to send the message to")
parser.add_argument("-m", "--message", dest="message",

help="message to send")

args = parser.parse_args()

Setup logging.
logging.basicConfig(level=args.loglevel,

format='%(levelname)-8s %(message)s')

if args.jid is None:
args.jid = input("Username: ")

if args.password is None:
args.password = getpass("Password: ")

if args.to is None:
args.to = input("Send To: ")

if args.message is None:
args.message = input("Message: ")

Setup the EchoBot and register plugins. Note that while plugins may
have interdependencies, the order in which you register them does
not matter.
xmpp = SendMsgBot(args.jid, args.password, args.to, args.message)
xmpp.register_plugin('xep_0030') # Service Discovery
xmpp.register_plugin('xep_0199') # XMPP Ping

Connect to the XMPP server and start processing XMPP stanzas.
xmpp.connect()
xmpp.process(forever=False)

3.3 Create and Run a Server Component

Note: If you have any issues working through this quickstart guide join the chat room at slixmpp@muc.poez.io.

If you have not yet installed Slixmpp, do so now by either checking out a version with Git.

Many XMPP applications eventually graduate to requiring to run as a server component in order to meet scalability
requirements. To demonstrate how to turn an XMPP client bot into a component, we’ll turn the echobot example
(Slixmpp Quickstart - Echo Bot) into a component version.

The first difference is that we will add an additional import statement:

3.3. Create and Run a Server Component 19

xmpp:slixmpp@muc.poez.io?join
https://lab.louiz.org/poezio/slixmpp

Slixmpp Documentation, Release 1.5

from slixmpp.componentxmpp import ComponentXMPP

Likewise, we will change the bot’s class definition to match:

class EchoComponent(ComponentXMPP):

def __init__(self, jid, secret, server, port):
ComponentXMPP.__init__(self, jid, secret, server, port)

A component instance requires two extra parameters compared to a client instance: server and port. These specifiy
the name and port of the XMPP server that will be accepting the component. For example, for a MUC component, the
following could be used:

muc = ComponentXMPP('muc.slixmpp.com', '******', 'slixmpp.com', 5555)

Note: The server value is NOT derived from the provided JID for the component, unlike with client connections.

One difference with the component version is that we do not have to handle the session_start event if we don’t wish
to deal with presence.

The other, main difference with components is that the 'from' value for every stanza must be explicitly set, since
components may send stanzas from multiple JIDs. To do so, the send_message() and send_presence()
accept the parameters mfrom and pfrom, respectively. For any method that uses Iq stanzas, ifrom may be used.

3.3.1 Final Product

#!/usr/bin/env python3
-*- coding: utf-8 -*-

"""
Slixmpp: The Slick XMPP Library
Copyright (C) 2010 Nathanael C. Fritz
This file is part of Slixmpp.

See the file LICENSE for copying permission.
"""

import logging
from getpass import getpass
from argparse import ArgumentParser

import slixmpp
from slixmpp.componentxmpp import ComponentXMPP

class EchoComponent(ComponentXMPP):

"""
A simple Slixmpp component that echoes messages.
"""

def __init__(self, jid, secret, server, port):
ComponentXMPP.__init__(self, jid, secret, server, port)

(continues on next page)

20 Chapter 3. Getting Started (with Examples)

Slixmpp Documentation, Release 1.5

(continued from previous page)

You don't need a session_start handler, but that is
where you would broadcast initial presence.

The message event is triggered whenever a message
stanza is received. Be aware that that includes
MUC messages and error messages.
self.add_event_handler("message", self.message)

def message(self, msg):
"""
Process incoming message stanzas. Be aware that this also
includes MUC messages and error messages. It is usually
a good idea to check the messages's type before processing
or sending replies.

Since a component may send messages from any number of JIDs,
it is best to always include a from JID.

Arguments:
msg -- The received message stanza. See the documentation

for stanza objects and the Message stanza to see
how it may be used.

"""
The reply method will use the messages 'to' JID as the
outgoing reply's 'from' JID.
msg.reply("Thanks for sending\n%(body)s" % msg).send()

if __name__ == '__main__':
Setup the command line arguments.
parser = ArgumentParser(description=EchoComponent.__doc__)

Output verbosity options.
parser.add_argument("-q", "--quiet", help="set logging to ERROR",

action="store_const", dest="loglevel",
const=logging.ERROR, default=logging.INFO)

parser.add_argument("-d", "--debug", help="set logging to DEBUG",
action="store_const", dest="loglevel",
const=logging.DEBUG, default=logging.INFO)

JID and password options.
parser.add_argument("-j", "--jid", dest="jid",

help="JID to use")
parser.add_argument("-p", "--password", dest="password",

help="password to use")
parser.add_argument("-s", "--server", dest="server",

help="server to connect to")
parser.add_argument("-P", "--port", dest="port",

help="port to connect to")

args = parser.parse_args()

if args.jid is None:
args.jid = input("Component JID: ")

if args.password is None:
args.password = getpass("Password: ")

if args.server is None:
(continues on next page)

3.3. Create and Run a Server Component 21

Slixmpp Documentation, Release 1.5

(continued from previous page)

args.server = input("Server: ")
if args.port is None:

args.port = int(input("Port: "))

Setup logging.
logging.basicConfig(level=args.loglevel,

format='%(levelname)-8s %(message)s')

Setup the EchoComponent and register plugins. Note that while plugins
may have interdependencies, the order in which you register them does
not matter.
xmpp = EchoComponent(args.jid, args.password, args.server, args.port)
xmpp.register_plugin('xep_0030') # Service Discovery
xmpp.register_plugin('xep_0004') # Data Forms
xmpp.register_plugin('xep_0060') # PubSub
xmpp.register_plugin('xep_0199') # XMPP Ping

Connect to the XMPP server and start processing XMPP stanzas.
xmpp.connect()
xmpp.process()

3.4 Manage Presence Subscriptions

3.5 Multi-User Chat (MUC) Bot

Note: If you have any issues working through this quickstart guide join the chat room at slixmpp@muc.poez.io.

If you have not yet installed Slixmpp, do so now by either checking out a version from Git.

Now that you’ve got the basic gist of using Slixmpp by following the echobot example (Slixmpp Quickstart - Echo
Bot), we can use one of the bundled plugins to create a very popular XMPP starter project: a Multi-User Chat (MUC)
bot. Our bot will login to an XMPP server, join an MUC chat room and “lurk” indefinitely, responding with a generic
message to anyone that mentions its nickname. It will also greet members as they join the chat room.

3.5.1 Joining The Room

As usual, our code will be based on the pattern explained in Slixmpp Quickstart - Echo Bot. To start, we create an
MUCBot class based on ClientXMPP and which accepts parameters for the JID of the MUC room to join, and the
nick that the bot will use inside the chat room. We also register an event handler for the session_start event.

import slixmpp

class MUCBot(slixmpp.ClientXMPP):

def __init__(self, jid, password, room, nick):
slixmpp.ClientXMPP.__init__(self, jid, password)

self.room = room
self.nick = nick

(continues on next page)

22 Chapter 3. Getting Started (with Examples)

xmpp:slixmpp@muc.poez.io?join
https://lab.louiz.org/poezio/slixmpp
http://xmpp.org/extensions/xep-0045.html

Slixmpp Documentation, Release 1.5

(continued from previous page)

self.add_event_handler("session_start", self.start)

After initialization, we also need to register the MUC (XEP-0045) plugin so that we can make use of the group chat
plugin’s methods and events.

xmpp.register_plugin('xep_0045')

Finally, we can make our bot join the chat room once an XMPP session has been established:

def start(self, event):
self.get_roster()
self.send_presence()
self.plugin['xep_0045'].join_muc(self.room,

self.nick,
wait=True)

Note that as in Slixmpp Quickstart - Echo Bot, we need to include send an initial presence and request the roster. Next,
we want to join the group chat, so we call the join_muc method of the MUC plugin.

Note: The plugin attribute is dictionary that maps to instances of plugins that we have previously registered, by
their names.

3.5.2 Adding Functionality

Currently, our bot just sits dormantly inside the chat room, but we would like it to respond to two distinct events by
issuing a generic message in each case to the chat room. In particular, when a member mentions the bot’s nickname
inside the chat room, and when a member joins the chat room.

Responding to Mentions

Whenever a user mentions our bot’s nickname in chat, our bot will respond with a generic message resembling “I
heard that, user.” We do this by examining all of the messages sent inside the chat and looking for the ones which
contain the nickname string.

First, we register an event handler for the groupchat_message event inside the bot’s __init__ function.

Note: We do not register a handler for the message event in this bot, but if we did, the group chat message would
have been sent to both handlers.

def __init__(self, jid, password, room, nick):
slixmpp.ClientXMPP.__init__(self, jid, password)

self.room = room
self.nick = nick

self.add_event_handler("session_start", self.start)
self.add_event_handler("groupchat_message", self.muc_message)

Then, we can send our generic message whenever the bot’s nickname gets mentioned.

3.5. Multi-User Chat (MUC) Bot 23

Slixmpp Documentation, Release 1.5

Warning: Always check that a message is not from yourself, otherwise you will create an infinite loop responding
to your own messages.

def muc_message(self, msg):
if msg['mucnick'] != self.nick and self.nick in msg['body']:

self.send_message(mto=msg['from'].bare,
mbody="I heard that, %s." % msg['mucnick'],
mtype='groupchat')

Greeting Members

Now we want to greet member whenever they join the group chat. To do this we will use the dynamic
muc::room@server::got_online1 event so it’s a good idea to register an event handler for it.

Note: The groupchat_presence event is triggered whenever a presence stanza is received from
any chat room, including any presences you send yourself. To limit event handling to a sin-
gle room, use the events muc::room@server::presence, muc::room@server::got_online, or
muc::room@server::got_offline.

def __init__(self, jid, password, room, nick):
slixmpp.ClientXMPP.__init__(self, jid, password)

self.room = room
self.nick = nick

self.add_event_handler("session_start", self.start)
self.add_event_handler("groupchat_message", self.muc_message)
self.add_event_handler("muc::%s::got_online" % self.room,

self.muc_online)

Now all that’s left to do is to greet them:

def muc_online(self, presence):
if presence['muc']['nick'] != self.nick:

self.send_message(mto=presence['from'].bare,
mbody="Hello, %s %s" % (presence['muc']['role'],

presence['muc']['nick']),
mtype='groupchat')

3.5.3 Final Product

The final step is to create a small runner script for initialising our MUCBot class and adding some basic configuration
options. By following the basic boilerplate pattern in Slixmpp Quickstart - Echo Bot, we arrive at the code below. To
experiment with this example, you can use:

python muc.py -d -j jid@example.com -r room@muc.example.net -n lurkbot

which will prompt for the password, log in, and join the group chat. To test, open your regular IM client and join the
same group chat that you sent the bot to. You will see lurkbot as one of the members in the group chat, and that

1 this is similar to the got_online event and is sent by the xep_0045 plugin whenever a member joins the referenced MUC chat room.

24 Chapter 3. Getting Started (with Examples)

Slixmpp Documentation, Release 1.5

it greeted you upon entry. Send a message with the string “lurkbot” inside the body text, and you will also see that it
responds with our pre-programmed customized message.

#!/usr/bin/env python3
-*- coding: utf-8 -*-

"""
Slixmpp: The Slick XMPP Library
Copyright (C) 2010 Nathanael C. Fritz
This file is part of Slixmpp.

See the file LICENSE for copying permission.
"""

import logging
from getpass import getpass
from argparse import ArgumentParser

import slixmpp

class MUCBot(slixmpp.ClientXMPP):

"""
A simple Slixmpp bot that will greets those
who enter the room, and acknowledge any messages
that mentions the bot's nickname.
"""

def __init__(self, jid, password, room, nick):
slixmpp.ClientXMPP.__init__(self, jid, password)

self.room = room
self.nick = nick

The session_start event will be triggered when
the bot establishes its connection with the server
and the XML streams are ready for use. We want to
listen for this event so that we we can initialize
our roster.
self.add_event_handler("session_start", self.start)

The groupchat_message event is triggered whenever a message
stanza is received from any chat room. If you also also
register a handler for the 'message' event, MUC messages
will be processed by both handlers.
self.add_event_handler("groupchat_message", self.muc_message)

The groupchat_presence event is triggered whenever a
presence stanza is received from any chat room, including
any presences you send yourself. To limit event handling
to a single room, use the events muc::room@server::presence,
muc::room@server::got_online, or muc::room@server::got_offline.
self.add_event_handler("muc::%s::got_online" % self.room,

self.muc_online)

async def start(self, event):
(continues on next page)

3.5. Multi-User Chat (MUC) Bot 25

Slixmpp Documentation, Release 1.5

(continued from previous page)

"""
Process the session_start event.

Typical actions for the session_start event are
requesting the roster and broadcasting an initial
presence stanza.

Arguments:
event -- An empty dictionary. The session_start

event does not provide any additional
data.

"""
await self.get_roster()
self.send_presence()
self.plugin['xep_0045'].join_muc(self.room,

self.nick,
If a room password is needed, use:
password=the_room_password,
wait=True)

def muc_message(self, msg):
"""
Process incoming message stanzas from any chat room. Be aware
that if you also have any handlers for the 'message' event,
message stanzas may be processed by both handlers, so check
the 'type' attribute when using a 'message' event handler.

Whenever the bot's nickname is mentioned, respond to
the message.

IMPORTANT: Always check that a message is not from yourself,
otherwise you will create an infinite loop responding
to your own messages.

This handler will reply to messages that mention
the bot's nickname.

Arguments:
msg -- The received message stanza. See the documentation

for stanza objects and the Message stanza to see
how it may be used.

"""
if msg['mucnick'] != self.nick and self.nick in msg['body']:

self.send_message(mto=msg['from'].bare,
mbody="I heard that, %s." % msg['mucnick'],
mtype='groupchat')

def muc_online(self, presence):
"""
Process a presence stanza from a chat room. In this case,
presences from users that have just come online are
handled by sending a welcome message that includes
the user's nickname and role in the room.

Arguments:
presence -- The received presence stanza. See the

documentation for the Presence stanza
(continues on next page)

26 Chapter 3. Getting Started (with Examples)

Slixmpp Documentation, Release 1.5

(continued from previous page)

to see how else it may be used.
"""
if presence['muc']['nick'] != self.nick:

self.send_message(mto=presence['from'].bare,
mbody="Hello, %s %s" % (presence['muc']['role'],

presence['muc']['nick']),
mtype='groupchat')

if __name__ == '__main__':
Setup the command line arguments.
parser = ArgumentParser()

Output verbosity options.
parser.add_argument("-q", "--quiet", help="set logging to ERROR",

action="store_const", dest="loglevel",
const=logging.ERROR, default=logging.INFO)

parser.add_argument("-d", "--debug", help="set logging to DEBUG",
action="store_const", dest="loglevel",
const=logging.DEBUG, default=logging.INFO)

JID and password options.
parser.add_argument("-j", "--jid", dest="jid",

help="JID to use")
parser.add_argument("-p", "--password", dest="password",

help="password to use")
parser.add_argument("-r", "--room", dest="room",

help="MUC room to join")
parser.add_argument("-n", "--nick", dest="nick",

help="MUC nickname")

args = parser.parse_args()

Setup logging.
logging.basicConfig(level=args.loglevel,

format='%(levelname)-8s %(message)s')

if args.jid is None:
args.jid = input("Username: ")

if args.password is None:
args.password = getpass("Password: ")

if args.room is None:
args.room = input("MUC room: ")

if args.nick is None:
args.nick = input("MUC nickname: ")

Setup the MUCBot and register plugins. Note that while plugins may
have interdependencies, the order in which you register them does
not matter.
xmpp = MUCBot(args.jid, args.password, args.room, args.nick)
xmpp.register_plugin('xep_0030') # Service Discovery
xmpp.register_plugin('xep_0045') # Multi-User Chat
xmpp.register_plugin('xep_0199') # XMPP Ping

Connect to the XMPP server and start processing XMPP stanzas.
xmpp.connect()
xmpp.process()

3.5. Multi-User Chat (MUC) Bot 27

Slixmpp Documentation, Release 1.5

3.6 Enable HTTP Proxy Support

Note: If you have any issues working through this quickstart guide join the chat room at slixmpp@muc.poez.io.

In some instances, you may wish to route XMPP traffic through an HTTP proxy, probably to get around restrictive
firewalls. Slixmpp provides support for basic HTTP proxying with DIGEST authentication.

Enabling proxy support is done in two steps. The first is to instruct Slixmpp to use a proxy, and the second is to
configure the proxy details:

xmpp = ClientXMPP(...)
xmpp.use_proxy = True
xmpp.proxy_config = {

'host': 'proxy.example.com',
'port': 5555,
'username': 'example_user',
'password': '******'

}

The 'username' and 'password' fields are optional if the proxy does not require authentication.

3.6.1 The Final Product

#!/usr/bin/env python3
-*- coding: utf-8 -*-

"""
Slixmpp: The Slick XMPP Library
Copyright (C) 2010 Nathanael C. Fritz
This file is part of Slixmpp.

See the file LICENSE for copying permission.
"""

import logging
from getpass import getpass
from argparse import ArgumentParser

import slixmpp

class EchoBot(slixmpp.ClientXMPP):

"""
A simple Slixmpp bot that will echo messages it
receives, along with a short thank you message.
"""

def __init__(self, jid, password):
slixmpp.ClientXMPP.__init__(self, jid, password)

The session_start event will be triggered when
the bot establishes its connection with the server
and the XML streams are ready for use. We want to

(continues on next page)

28 Chapter 3. Getting Started (with Examples)

xmpp:slixmpp@muc.poez.io?join

Slixmpp Documentation, Release 1.5

(continued from previous page)

listen for this event so that we we can initialize
our roster.
self.add_event_handler("session_start", self.start)

The message event is triggered whenever a message
stanza is received. Be aware that that includes
MUC messages and error messages.
self.add_event_handler("message", self.message)

async def start(self, event):
"""
Process the session_start event.

Typical actions for the session_start event are
requesting the roster and broadcasting an initial
presence stanza.

Arguments:
event -- An empty dictionary. The session_start

event does not provide any additional
data.

"""
self.send_presence()
await self.get_roster()

def message(self, msg):
"""
Process incoming message stanzas. Be aware that this also
includes MUC messages and error messages. It is usually
a good idea to check the messages's type before processing
or sending replies.

Arguments:
msg -- The received message stanza. See the documentation

for stanza objects and the Message stanza to see
how it may be used.

"""
msg.reply("Thanks for sending\n%(body)s" % msg).send()

if __name__ == '__main__':
Setup the command line arguments.
parser = ArgumentParser()

Output verbosity options.
parser.add_argument("-q", "--quiet", help="set logging to ERROR",

action="store_const", dest="loglevel",
const=logging.ERROR, default=logging.INFO)

parser.add_argument("-d", "--debug", help="set logging to DEBUG",
action="store_const", dest="loglevel",
const=logging.DEBUG, default=logging.INFO)

JID and password options.
parser.add_argument("-j", "--jid", dest="jid",

help="JID to use")
parser.add_argument("-p", "--password", dest="password",

help="password to use")
(continues on next page)

3.6. Enable HTTP Proxy Support 29

Slixmpp Documentation, Release 1.5

(continued from previous page)

parser.add_argument("--phost", dest="proxy_host",
help="Proxy hostname")

parser.add_argument("--pport", dest="proxy_port",
help="Proxy port")

parser.add_argument("--puser", dest="proxy_user",
help="Proxy username")

parser.add_argument("--ppass", dest="proxy_pass",
help="Proxy password")

args = parser.parse_args()

Setup logging.
logging.basicConfig(level=args.loglevel,

format='%(levelname)-8s %(message)s')

if args.jid is None:
args.jid = input("Username: ")

if args.password is None:
args.password = getpass("Password: ")

if args.proxy_host is None:
args.proxy_host = input("Proxy host: ")

if args.proxy_port is None:
args.proxy_port = input("Proxy port: ")

if args.proxy_user is None:
args.proxy_user = input("Proxy username: ")

if args.proxy_pass is None and args.proxy_user:
args.proxy_pass = getpass("Proxy password: ")

Setup the EchoBot and register plugins. Note that while plugins may
have interdependencies, the order in which you register them does
not matter.
xmpp = EchoBot(args.jid, args.password)
xmpp.register_plugin('xep_0030') # Service Discovery
xmpp.register_plugin('xep_0004') # Data Forms
xmpp.register_plugin('xep_0060') # PubSub
xmpp.register_plugin('xep_0199') # XMPP Ping

xmpp.use_proxy = True
xmpp.proxy_config = {

'host': args.proxy_host,
'port': int(args.proxy_port),
'username': args.proxy_user,
'password': args.proxy_pass}

Connect to the XMPP server and start processing XMPP stanzas.
xmpp.connect()
xmpp.process()

3.7 Send a Message Every 5 Minutes

3.8 Send/Receive IQ Stanzas

Unlike Message and Presence stanzas which only use text data for basic usage, Iq stanzas require using XML
payloads, and generally entail creating a new Slixmpp plugin to provide the necessary convenience methods to make

30 Chapter 3. Getting Started (with Examples)

Slixmpp Documentation, Release 1.5

working with them easier.

3.8.1 Basic Use

XMPP’s use of Iq stanzas is built around namespaced <query /> elements. For clients, just sending the empty
<query /> element will suffice for retrieving information. For example, a very basic implementation of service
discovery would just need to be able to send:

<iq to="user@example.com" type="get" id="1">
<query xmlns="http://jabber.org/protocol/disco#info" />

</iq>

Creating Iq Stanzas

Slixmpp provides built-in support for creating basic Iq stanzas this way. The relevant methods are:

• make_iq()

• make_iq_get()

• make_iq_set()

• make_iq_result()

• make_iq_error()

• make_iq_query()

These methods all follow the same pattern: create or modify an existing Iq stanza, set the 'type' value based on the
method name, and finally add a <query /> element with the given namespace. For example, to produce the query
above, you would use:

self.make_iq_get(queryxmlns='http://jabber.org/protocol/disco#info',
ito='user@example.com')

Sending Iq Stanzas

Once an Iq stanza is created, sending it over the wire is done using its send() method, like any other stanza object.
However, there are a few extra options to control how to wait for the query’s response.

These options are:

• block: The default behaviour is that send() will block until a response is received and the response stanza
will be the return value. Setting block to False will cause the call to return immediately. In which case, you
will need to arrange some way to capture the response stanza if you need it.

• timeout: When using the blocking behaviour, the call will eventually timeout with an error. The default
timeout is 30 seconds, but this may be overidden two ways. To change the timeout globally, set:

self.response_timeout = 10

To change the timeout for a single call, the timeout parameter works:

iq.send(timeout=60)

3.8. Send/Receive IQ Stanzas 31

Slixmpp Documentation, Release 1.5

• callback: When not using a blocking call, using the callback argument is a simple way to register a
handler that will execute whenever a response is finally received. Using this method, there is no timeout limit.
In case you need to remove the callback, the name of the newly created callback is returned.

cb_name = iq.send(callback=self.a_callback)

... later if we need to cancel
self.remove_handler(cb_name)

Properly working with Iq stanzas requires handling the intended, normal flow, error responses, and timed out requests.
To make this easier, two exceptions may be thrown by send(): IqError and IqTimeout. These exceptions only
apply to the default, blocking calls.

try:
resp = iq.send()
... do stuff with expected Iq result

except IqError as e:
err_resp = e.iq
... handle error case

except IqTimeout:
... no response received in time
pass

If you do not care to distinguish between errors and timeouts, then you can combine both cases with a generic
XMPPError exception:

try:
resp = iq.send()

except XMPPError:
... Don't care about the response
pass

3.8.2 Advanced Use

Going beyond the basics provided by Slixmpp requires building at least a rudimentary Slixmpp plugin to create a
stanza object for interfacting with the Iq payload.

See also:

• Creating a Slixmpp Plugin

• How to Work with Stanza Objects

• Using Stream Handlers and Matchers

The typical way to respond to Iq requests is to register stream handlers. As an example, suppose we create a
stanza class named CustomXEP which uses the XML element <query xmlns="custom-xep" />, and has
a plugin_attrib value of custom_xep.

There are two types of incoming Iq requests: get and set. You can register a handler that will accept both and then
filter by type as needed, as so:

self.register_handler(Callback(
'CustomXEP Handler',
StanzaPath('iq/custom_xep'),
self._handle_custom_iq))

...
(continues on next page)

32 Chapter 3. Getting Started (with Examples)

Slixmpp Documentation, Release 1.5

(continued from previous page)

def _handle_custom_iq(self, iq):
if iq['type'] == 'get':

...
pass

elif iq['type'] == 'set':
...
pass

else:
... This will capture error responses too
pass

If you want to filter out query types beforehand, you can adjust the matching filter by using @type=get or
@type=set if you are using the recommended StanzaPath matcher.

self.register_handler(Callback(
'CustomXEP Handler',
StanzaPath('iq@type=get/custom_xep'),
self._handle_custom_iq_get))

...

def _handle_custom_iq_get(self, iq):
assert(iq['type'] == 'get')

3.8. Send/Receive IQ Stanzas 33

Slixmpp Documentation, Release 1.5

34 Chapter 3. Getting Started (with Examples)

CHAPTER 4

Tutorials, FAQs, and How To Guides

4.1 Supported XEPS

XEP Description Notes
0004 Data forms
0009 Jabber RPC
0012 Last Activity
0030 Service Discovery
0033 Extended Stanza Addressing
0045 Multi-User Chat (MUC) Client-side only
0050 Ad-hoc Commands
0059 Result Set Management
0060 Publish/Subscribe (PubSub) Client-side only
0066 Out-of-band Data
0078 Non-SASL Authentication
0082 XMPP Date and Time Profiles
0085 Chat-State Notifications
0086 Error Condition Mappings
0092 Software Version
0128 Service Discovery Extensions
0202 Entity Time
0203 Delayed Delivery
0224 Attention
0249 Direct MUC Invitations

4.2 Following XMPP: The Definitive Guide

Slixmpp was featured in the first edition of the O’Reilly book XMPP: The Definitive Guide by Peter Saint-Andre,
Kevin Smith, and Remko Tronçon. The original source code for the book’s examples can be found at http://github.

35

http://xmpp.org/extensions/xep-0004.html
http://xmpp.org/extensions/xep-0009.html
http://xmpp.org/extensions/xep-0012.html
http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0033.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0050.html
http://xmpp.org/extensions/xep-0059.html
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0066.html
http://xmpp.org/extensions/xep-0078.html
http://xmpp.org/extensions/xep-0082.html
http://xmpp.org/extensions/xep-0085.html
http://xmpp.org/extensions/xep-0086.html
http://xmpp.org/extensions/xep-0092.html
http://xmpp.org/extensions/xep-0128.html
http://xmpp.org/extensions/xep-0202.html
http://xmpp.org/extensions/xep-0203.html
http://xmpp.org/extensions/xep-0224.html
http://xmpp.org/extensions/xep-0249.html
http://oreilly.com/catalog/9780596521271/
http://github.com/remko/xmpp-tdg
http://github.com/remko/xmpp-tdg

Slixmpp Documentation, Release 1.5

com/remko/xmpp-tdg. An updated version of the source code, maintained to stay current with the latest Slixmpp
release, is available at http://github.com/legastero/xmpp-tdg.

However, since publication, Slixmpp has advanced from version 0.2.1 to version 1.0 and there have been several
major API changes. The most notable is the introduction of stanza objects which have simplified and standardized
interactions with the XMPP XML stream.

What follows is a walk-through of The Definitive Guide highlighting the changes needed to make the code examples
work with version 1.0 of Slixmpp. These changes have been kept to a minimum to preserve the correlation with the
book’s explanations, so be aware that some code may not use current best practices.

4.2.1 Example 2-2. (Page 26)

Implementation of a basic bot that echoes all incoming messages back to its sender.

The echo bot example requires a change to the handleIncomingMessage method to reflect the use of the
Message stanza object. The "jid" field of the message object should now be "from" to match the from at-
tribute of the actual XML message stanza. Likewise, "message" changes to "body" to match the body element
of the message stanza.

Updated Code

def handleIncomingMessage(self, message):
self.xmpp.send_message(message["from"], message["body"])

View full source | View original code

4.2.2 Example 14-1. (Page 215)

CheshiR IM bot implementation.

The main event handling method in the Bot class is meant to process both message events and presence update events.
With the new changes in Slixmpp 1.0, extracting a CheshiR status “message” from both types of stanzas requires
accessing different attributes. In the case of a message stanza, the "body" attribute would contain the CheshiR
message. For a presence event, the information is stored in the "status" attribute. To handle both cases, we can
test the type of the given event object and look up the proper attribute based on the type.

Like in the EchoBot example, the expression event["jid"] needs to change to event["from"] in order to get
a JID object for the stanza’s sender. Because other functions in CheshiR assume that the JID is a string, the jid
attribute is used to access the string version of the JID. A check is also added in case user is None, but the check
could (and probably should) be placed in addMessageFromUser.

Another change is needed in handleMessageAddedToBackend where an HTML-IM response is created. The
HTML content should be enclosed in a single element, such as a <p> tag.

Updated Code

def handleIncomingXMPPEvent(self, event):
msgLocations = {slixmpp.stanza.presence.Presence: "status",

slixmpp.stanza.message.Message: "body"}

message = event[msgLocations[type(event)]]
user = self.backend.getUserFromJID(event["from"].jid)

(continues on next page)

36 Chapter 4. Tutorials, FAQs, and How To Guides

http://github.com/remko/xmpp-tdg
http://github.com/remko/xmpp-tdg
http://github.com/legastero/xmpp-tdg
http://github.com/legastero/xmpp-tdg/blob/master/code/EchoBot/EchoBot.py
http://github.com/remko/xmpp-tdg/blob/master/code/EchoBot/EchoBot.py

Slixmpp Documentation, Release 1.5

(continued from previous page)

if user is not None:
self.backend.addMessageFromUser(message, user)

def handleMessageAddedToBackend(self, message) :
body = message.user + ": " + message.text
htmlBody = "<p>%(user)s: %(message)s</p>" % {
"uri": self.url + "/" + message.user,
"user" : message.user, "message" : message.text }

for subscriberJID in self.backend.getSubscriberJIDs(message.user) :
self.xmpp.send_message(subscriberJID, body, mhtml=htmlBody)

View full source | View original code

4.2.3 Example 14-3. (Page 217)

Configurable CheshiR IM bot implementation.

Note: Since the CheshiR examples build on each other, see previous sections for corrections to code that is not
marked as new in the book example.

The main difference for the configurable IM bot is the handling for the data form in
handleConfigurationCommand. The test for equality with the string "1" is no longer required; Slixmpp
converts boolean data form fields to the values True and False automatically.

For the method handleIncomingXMPPPresence, the attribute "jid" is again converted to "from" to get
a JID object for the presence stanza’s sender, and the jid attribute is used to access the string version of that
JID object. A check is also added in case user is None, but the check could (and probably should) be placed in
getShouldMonitorPresenceFromUser.

Updated Code

def handleConfigurationCommand(self, form, sessionId):
values = form.getValues()
monitorPresence =values["monitorPresence"]
jid = self.xmpp.plugin["xep_0050"].sessions[sessionId]["jid"]
user = self.backend.getUserFromJID(jid)
self.backend.setShouldMonitorPresenceFromUser(user, monitorPresence)

def handleIncomingXMPPPresence(self, event):
user = self.backend.getUserFromJID(event["from"].jid)
if user is not None:

if self.backend.getShouldMonitorPresenceFromUser(user):
self.handleIncomingXMPPEvent(event)

View full source | View original code

4.2.4 Example 14-4. (Page 220)

CheshiR IM server component implementation.

4.2. Following XMPP: The Definitive Guide 37

http://github.com/legastero/xmpp-tdg/blob/master/code/CheshiR/Bot.py
http://github.com/remko/xmpp-tdg/blob/master/code/CheshiR/Bot.py
http://github.com/legastero/xmpp-tdg/blob/master/code/CheshiR/ConfigurableBot.py
http://github.com/remko/xmpp-tdg/blob/master/code/CheshiR/ConfigurableBot.py

Slixmpp Documentation, Release 1.5

Note: Since the CheshiR examples build on each other, see previous sections for corrections to code that is not
marked as new in the book example.

Like several previous examples, a needed change is to replace subscription["from"] with
subscription["from"].jid because the BaseXMPP method make_presence requires the JID to be
a string.

A correction needs to be made in handleXMPPPresenceProbe because a line was left out of the original imple-
mentation; the variable user is undefined. The JID of the user can be extracted from the presence stanza’s from
attribute.

Since this implementation of CheshiR uses an XMPP component, it must include a from attribute in all messages
that it sends. Adding the from attribute is done by including mfrom=self.xmpp.jid in calls to self.xmpp.
send_message.

Updated Code

def handleXMPPPresenceProbe(self, event) :
self.xmpp.send_presence(pto = event["from"])

def handleXMPPPresenceSubscription(self, subscription) :
if subscription["type"] == "subscribe" :
userJID = subscription["from"].jid
self.xmpp.send_presence_subscription(pto=userJID, ptype="subscribed")
self.xmpp.send_presence(pto = userJID)
self.xmpp.send_presence_subscription(pto=userJID, ptype="subscribe")

def handleMessageAddedToBackend(self, message) :
body = message.user + ": " + message.text
for subscriberJID in self.backend.getSubscriberJIDs(message.user) :
self.xmpp.send_message(subscriberJID, body, mfrom=self.xmpp.jid)

View full source | View original code

4.2.5 Example 14-6. (Page 223)

CheshiR IM server component with in-band registration support.

Note: Since the CheshiR examples build on each other, see previous sections for corrections to code that is not
marked as new in the book example.

After applying the changes from Example 14-4 above, the registrable component implementation should work cor-
rectly.

Tip: To see how to implement in-band registration as a Slixmpp plugin, see the tutorial tutorial-create-plugin.

View full source | View original code

38 Chapter 4. Tutorials, FAQs, and How To Guides

http://github.com/legastero/xmpp-tdg/blob/master/code/CheshiR/SimpleComponent.py
http://github.com/remko/xmpp-tdg/blob/master/code/CheshiR/SimpleComponent.py
http://github.com/legastero/xmpp-tdg/blob/master/code/CheshiR/RegistrableComponent.py
http://github.com/remko/xmpp-tdg/blob/master/code/CheshiR/RegistrableComponent.py

Slixmpp Documentation, Release 1.5

4.2.6 Example 14-7. (Page 225)

Extended CheshiR IM server component implementation.

Note: Since the CheshiR examples build on each other, see previous sections for corrections to code that is not
marked as new in the book example.

While the final code example can look daunting with all of the changes made, it requires very few modifications to
work with the latest version of Slixmpp. Most differences are the result of CheshiR’s backend functions expecting
JIDs to be strings so that they can be stripped to bare JIDs. To resolve these, use the jid attribute of the JID objects.
Also, references to "message" and "jid" attributes need to be changed to either "body" or "status", and
either "from" or "to" depending on if the object is a message or presence stanza and which of the JIDs from the
stanza is needed.

Updated Code

def handleIncomingXMPPMessage(self, event) :
message = self.addRecipientToMessage(event["body"], event["to"].jid)
user = self.backend.getUserFromJID(event["from"].jid)
self.backend.addMessageFromUser(message, user)

def handleIncomingXMPPPresence(self, event) :
if event["to"].jid == self.componentDomain :
user = self.backend.getUserFromJID(event["from"].jid)
self.backend.addMessageFromUser(event["status"], user)

...

def handleXMPPPresenceSubscription(self, subscription) :
if subscription["type"] == "subscribe" :
userJID = subscription["from"].jid
user = self.backend.getUserFromJID(userJID)
contactJID = subscription["to"]
self.xmpp.send_presence_subscription(

pfrom=contactJID, pto=userJID, ptype="subscribed", pnick=user)
self.sendPresenceOfContactToUser(contactJID=contactJID, userJID=userJID)
if contactJID == self.componentDomain :
self.sendAllContactSubscriptionRequestsToUser(userJID)

View full source | View original code

4.2. Following XMPP: The Definitive Guide 39

http://github.com/legastero/xmpp-tdg/blob/master/code/CheshiR/Component.py
http://github.com/remko/xmpp-tdg/blob/master/code/CheshiR/Component.py

Slixmpp Documentation, Release 1.5

4.3 How to Work with Stanza Objects

4.3.1 Defining Stanza Interfaces

4.3.2 Creating Stanza Plugins

4.3.3 Creating a Stanza Extension

4.3.4 Overriding a Parent Stanza

4.4 Creating a Slixmpp Plugin

One of the goals of Slixmpp is to provide support for every draft or final XMPP extension (XEP). To do this, Slixmpp
has a plugin mechanism for adding the functionalities required by each XEP. But even though plugins were made to
quickly implement and prototype the official XMPP extensions, there is no reason you can’t create your own plugin to
implement your own custom XMPP-based protocol.

This guide will help walk you through the steps to implement a rudimentary version of XEP-0077 In-band Registration.
In-band registration was implemented in example 14-6 (page 223) of XMPP: The Definitive Guide because there
was no Slixmpp plugin for XEP-0077 at the time of writing. We will partially fix that issue here by turning the
example implementation from XMPP: The Definitive Guide into a plugin. Again, note that this will not a complete
implementation, and a different, more robust, official plugin for XEP-0077 may be added to Slixmpp in the future.

Note: The example plugin created in this guide is for the server side of the registration process only. It will NOT be
able to register new accounts on an XMPP server.

4.4.1 First Steps

Every plugin inherits from the class BasePlugin <slixmpp.plugins.base.BasePlugin, and must in-
clude a plugin_init method. While the plugins distributed with Slixmpp must be placed in the plugins directory
slixmpp/plugins to be loaded, custom plugins may be loaded from any module. To do so, use the following form
when registering the plugin:

self.register_plugin('myplugin', module=mod_containing_my_plugin)

The plugin name must be the same as the plugin’s class name.

Now, we can open our favorite text editors and create xep_0077.py in Slixmpp/slixmpp/plugins. We want
to do some basic house-keeping and declare the name and description of the XEP we are implementing. If you are
creating your own custom plugin, you don’t need to include the xep attribute.

"""
Creating a Slixmpp Plugin

This is a minimal implementation of XEP-0077 to serve
as a tutorial for creating Slixmpp plugins.
"""

from slixmpp.plugins.base import BasePlugin

class xep_0077(BasePlugin):
(continues on next page)

40 Chapter 4. Tutorials, FAQs, and How To Guides

http://xmpp.org/extensions/
http://xmpp.org/extensions/xep-0077.html
http://oreilly.com/catalog/9780596521271

Slixmpp Documentation, Release 1.5

(continued from previous page)

"""
XEP-0077 In-Band Registration
"""

def plugin_init(self):
self.description = "In-Band Registration"
self.xep = "0077"

Now that we have a basic plugin, we need to edit slixmpp/plugins/__init__.py to include our new plugin
by adding 'xep_0077' to the __all__ declaration.

4.4.2 Interacting with Other Plugins

In-band registration is a feature that should be advertised through Service Discovery. To do that, we tell the xep_0030
plugin to add the "jabber:iq:register" feature. We put this call in a method named post_init which will
be called once the plugin has been loaded; by doing so we advertise that we can do registrations only after we finish
activating the plugin.

The post_init method needs to call BasePlugin.post_init(self) which will mark that post_init has
been called for the plugin. Once the Slixmpp object begins processing, post_init will be called on any plugins
that have not already run post_init. This allows you to register plugins and their dependencies without needing to
worry about the order in which you do so.

Note: by adding this call we have introduced a dependency on the XEP-0030 plugin. Be sure to register 'xep_0030'
as well as 'xep_0077'. Slixmpp does not automatically load plugin dependencies for you.

def post_init(self):
BasePlugin.post_init(self)
self.xmpp['xep_0030'].add_feature("jabber:iq:register")

4.4.3 Creating Custom Stanza Objects

Now, the IQ stanzas needed to implement our version of XEP-0077 are not very complex, and we could just interact
with the XML objects directly just like in the XMPP: The Definitive Guide example. However, creating custom stanza
objects is good practice.

We will create a new Registration stanza. Following the XMPP: The Definitive Guide example, we will add
support for a username and password field. We also need two flags: registered and remove. The registered
flag is sent when an already registered user attempts to register, along with their registration data. The remove flag is
a request to unregister a user’s account.

Adding additional fields specified in XEP-0077 will not be difficult and is left as an exercise for the reader.

Our Registration class needs to start with a few descriptions of its behaviour:

• namespace The namespace our stanza object lives in. In this case, "jabber:iq:register".

• name The name of the root XML element. In this case, the query element.

• plugin_attrib The name to access this type of stanza. In particular, given a registration stanza, the
Registration object can be found using: iq_object['register'].

• interfaces A list of dictionary-like keys that can be used with the stanza object. When using "key", if
there exists a method of the form getKey, setKey, or‘‘delKey‘‘ (depending on context) then the result
of calling that method will be returned. Otherwise, the value of the attribute key of the main stanza
element is returned if one exists.

4.4. Creating a Slixmpp Plugin 41

http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0077.html#registrar-formtypes-register

Slixmpp Documentation, Release 1.5

Note: The accessor methods currently use title case, and not camel case. Thus if you need to access an
item named "methodName" you will need to use getMethodname. This naming convention might
change to full camel case in a future version of Slixmpp.

• sub_interfaces A subset of interfaces, but these keys map to the text of any
subelements that are direct children of the main stanza element. Thus, referencing
iq_object['register']['username'] will either execute getUsername or return the
value in the username element of the query.

If you need to access an element, say elem, that is not a direct child of the main stanza element, you will
need to add getElem, setElem, and delElem. See the note above about naming conventions.

from slixmpp.xmlstream import ElementBase, ET, JID, register_stanza_plugin
from slixmpp import Iq

class Registration(ElementBase):
namespace = 'jabber:iq:register'
name = 'query'
plugin_attrib = 'register'
interfaces = {'username', 'password', 'registered', 'remove'}
sub_interfaces = interfaces

def getRegistered(self):
present = self.xml.find('{%s}registered' % self.namespace)
return present is not None

def getRemove(self):
present = self.xml.find('{%s}remove' % self.namespace)
return present is not None

def setRegistered(self, registered):
if registered:

self.addField('registered')
else:

del self['registered']

def setRemove(self, remove):
if remove:

self.addField('remove')
else:

del self['remove']

def addField(self, name):
itemXML = ET.Element('{%s}%s' % (self.namespace, name))
self.xml.append(itemXML)

Setting a sub_interface attribute to "" will remove that subelement. Since we want to include empty registration
fields in our form, we need the addField method to add the empty elements.

Since the registered and remove elements are just flags, we need to add custom logic to enforce the binary
behavior.

4.4.4 Extracting Stanzas from the XML Stream

Now that we have a custom stanza object, we need to be able to detect when we receive one. To do this, we register
a stream handler that will pattern match stanzas off of the XML stream against our stanza object’s element name and
namespace. To do so, we need to create a Callback object which contains an XML fragment that can identify our
stanza type. We can add this handler registration to our plugin_init method.

42 Chapter 4. Tutorials, FAQs, and How To Guides

Slixmpp Documentation, Release 1.5

Also, we need to associate our Registration class with IQ stanzas; that requires the use of the
register_stanza_plugin function (in slixmpp.xmlstream.stanzabase) which takes the class of a
parent stanza type followed by the substanza type. In our case, the parent stanza is an IQ stanza, and the substanza is
our registration query.

The __handleRegistration method referenced in the callback will be our handler function to process registra-
tion requests.

def plugin_init(self):
self.description = "In-Band Registration"
self.xep = "0077"

self.xmpp.register_handler(
Callback('In-Band Registration',
MatchXPath('{%s}iq/{jabber:iq:register}query' % self.xmpp.default_ns),
self.__handleRegistration))

register_stanza_plugin(Iq, Registration)

4.4.5 Handling Incoming Stanzas and Triggering Events

There are six situations that we need to handle to finish our implementation of XEP-0077.

Registration Form Request from a New User:

<iq type="result">
<query xmlns="jabber:iq:register">
<username />
<password />

</query>
</iq>

Registration Form Request from an Existing User:

<iq type="result">
<query xmlns="jabber:iq:register">
<registered />
<username>Foo</username>
<password>hunter2</password>

</query>
</iq>

Unregister Account:

<iq type="result">
<query xmlns="jabber:iq:register" />
</iq>

Incomplete Registration:

<iq type="error">
<query xmlns="jabber:iq:register">

<username>Foo</username>
</query>

<error code="406" type="modify">
<not-acceptable xmlns="urn:ietf:params:xml:ns:xmpp-stanzas" />

</error>
</iq>

4.4. Creating a Slixmpp Plugin 43

Slixmpp Documentation, Release 1.5

Conflicting Registrations:

<iq type="error">
<query xmlns="jabber:iq:register">
<username>Foo</username>
<password>hunter2</password>

</query>
<error code="409" type="cancel">
<conflict xmlns="urn:ietf:params:xml:ns:xmpp-stanzas" />

</error>
</iq>

Successful Registration:

<iq type="result">
<query xmlns="jabber:iq:register" />
</iq>

Cases 1 and 2: Registration Requests

Responding to registration requests depends on if the requesting user already has an account. If there is an account,
the response should include the registered flag and the user’s current registration information. Otherwise, we just
send the fields for our registration form.

We will handle both cases by creating a sendRegistrationForm method that will create either an empty of full
form depending on if we provide it with user data. Since we need to know which form fields to include (especially if
we add support for the other fields specified in XEP-0077), we will also create a method setForm which will take
the names of the fields we wish to include.

def plugin_init(self):
self.description = "In-Band Registration"
self.xep = "0077"
self.form_fields = ('username', 'password')
... remainder of plugin_init

...

def __handleRegistration(self, iq):
if iq['type'] == 'get':

Registration form requested
userData = self.backend[iq['from'].bare]
self.sendRegistrationForm(iq, userData)

def setForm(self, *fields):
self.form_fields = fields

def sendRegistrationForm(self, iq, userData=None):
reg = iq['register']
if userData is None:

userData = {}
else:

reg['registered'] = True

for field in self.form_fields:
data = userData.get(field, '')
if data:

(continues on next page)

44 Chapter 4. Tutorials, FAQs, and How To Guides

Slixmpp Documentation, Release 1.5

(continued from previous page)

Add field with existing data
reg[field] = data

else:
Add a blank field
reg.addField(field)

iq.reply().set_payload(reg.xml)
iq.send()

Note how we are able to access our Registration stanza object with iq['register'].

A User Backend

You might have noticed the reference to self.backend, which is an object that abstracts away storing and retrieving
user information. Since it is not much more than a dictionary, we will leave the implementation details to the final,
full source code example.

Case 3: Unregister an Account

The next simplest case to consider is responding to a request to remove an account. If we receive a remove flag, we
instruct the backend to remove the user’s account. Since your application may need to know about when users are
registered or unregistered, we trigger an event using self.xmpp.event('unregister_user', iq). See the
component examples below for how to respond to that event.

def __handleRegistration(self, iq):
if iq['type'] == 'get':

Registration form requested
userData = self.backend[iq['from'].bare]
self.sendRegistrationForm(iq, userData)

elif iq['type'] == 'set':
Remove an account
if iq['register']['remove']:

self.backend.unregister(iq['from'].bare)
self.xmpp.event('unregistered_user', iq)
iq.reply().send()
return

Case 4: Incomplete Registration

For the next case we need to check the user’s registration to ensure it has all of the fields we wanted. The simple option
that we will use is to loop over the field names and check each one; however, this means that all fields we send to the
user are required. Adding optional fields is left to the reader.

Since we have received an incomplete form, we need to send an error message back to the user. We have to send a few
different types of errors, so we will also create a _sendError method that will add the appropriate error element
to the IQ reply.

def __handleRegistration(self, iq):
if iq['type'] == 'get':

Registration form requested
userData = self.backend[iq['from'].bare]
self.sendRegistrationForm(iq, userData)

(continues on next page)

4.4. Creating a Slixmpp Plugin 45

Slixmpp Documentation, Release 1.5

(continued from previous page)

elif iq['type'] == 'set':
if iq['register']['remove']:

Remove an account
self.backend.unregister(iq['from'].bare)
self.xmpp.event('unregistered_user', iq)
iq.reply().send()
return

for field in self.form_fields:
if not iq['register'][field]:

Incomplete Registration
self._sendError(iq, '406', 'modify', 'not-acceptable'

"Please fill in all fields.")
return

...

def _sendError(self, iq, code, error_type, name, text=''):
iq.reply().set_payload(iq['register'].xml)
iq.error()
iq['error']['code'] = code
iq['error']['type'] = error_type
iq['error']['condition'] = name
iq['error']['text'] = text
iq.send()

Cases 5 and 6: Conflicting and Successful Registration

We are down to the final decision on if we have a successful registration. We send the user’s data to the backend with
the self.backend.register method. If it returns True, then registration has been successful. Otherwise, there
has been a conflict with usernames and registration has failed. Like with unregistering an account, we trigger an event
indicating that a user has been registered by using self.xmpp.event('registered_user', iq). See the
component examples below for how to respond to this event.

def __handleRegistration(self, iq):
if iq['type'] == 'get':

Registration form requested
userData = self.backend[iq['from'].bare]
self.sendRegistrationForm(iq, userData)

elif iq['type'] == 'set':
if iq['register']['remove']:

Remove an account
self.backend.unregister(iq['from'].bare)
self.xmpp.event('unregistered_user', iq)
iq.reply().send()
return

for field in self.form_fields:
if not iq['register'][field]:

Incomplete Registration
self._sendError(iq, '406', 'modify', 'not-acceptable',

"Please fill in all fields.")
return

if self.backend.register(iq['from'].bare, iq['register']):
(continues on next page)

46 Chapter 4. Tutorials, FAQs, and How To Guides

Slixmpp Documentation, Release 1.5

(continued from previous page)

Successful registration
self.xmpp.event('registered_user', iq)
iq.reply().set_payload(iq['register'].xml)
iq.send()

else:
Conflicting registration
self._sendError(iq, '409', 'cancel', 'conflict',

"That username is already taken.")

4.4.6 Example Component Using the XEP-0077 Plugin

Alright, the moment we’ve been working towards - actually using our plugin to simplify our other applications. Here is
a basic component that simply manages user registrations and sends the user a welcoming message when they register,
and a farewell message when they delete their account.

Note that we have to register the 'xep_0030' plugin first, and that we specified the form fields we wish to use with
self.xmpp.plugin['xep_0077'].setForm('username', 'password').

import slixmpp.componentxmpp

class Example(slixmpp.componentxmpp.ComponentXMPP):

def __init__(self, jid, password):
slixmpp.componentxmpp.ComponentXMPP.__init__(self, jid, password, 'localhost',

→˓ 8888)

self.register_plugin('xep_0030')
self.register_plugin('xep_0077')
self.plugin['xep_0077'].setForm('username', 'password')

self.add_event_handler("registered_user", self.reg)
self.add_event_handler("unregistered_user", self.unreg)

def reg(self, iq):
msg = "Welcome! %s" % iq['register']['username']
self.send_message(iq['from'], msg, mfrom=self.fulljid)

def unreg(self, iq):
msg = "Bye! %s" % iq['register']['username']
self.send_message(iq['from'], msg, mfrom=self.fulljid)

Congratulations! We now have a basic, functioning implementation of XEP-0077.

4.4.7 Complete Source Code for XEP-0077 Plugin

Here is a copy of a more complete implementation of the plugin we created, but with some additional registration
fields implemented.

"""
Creating a Slixmpp Plugin

This is a minimal implementation of XEP-0077 to serve
as a tutorial for creating Slixmpp plugins.
"""

(continues on next page)

4.4. Creating a Slixmpp Plugin 47

Slixmpp Documentation, Release 1.5

(continued from previous page)

from slixmpp.plugins.base import BasePlugin
from slixmpp.xmlstream.handler.callback import Callback
from slixmpp.xmlstream.matcher.xpath import MatchXPath
from slixmpp.xmlstream import ElementBase, ET, JID, register_stanza_plugin
from slixmpp import Iq
import copy

class Registration(ElementBase):
namespace = 'jabber:iq:register'
name = 'query'
plugin_attrib = 'register'
interfaces = {'username', 'password', 'email', 'nick', 'name',

'first', 'last', 'address', 'city', 'state', 'zip',
'phone', 'url', 'date', 'misc', 'text', 'key',
'registered', 'remove', 'instructions'}

sub_interfaces = interfaces

def getRegistered(self):
present = self.xml.find('{%s}registered' % self.namespace)
return present is not None

def getRemove(self):
present = self.xml.find('{%s}remove' % self.namespace)
return present is not None

def setRegistered(self, registered):
if registered:

self.addField('registered')
else:

del self['registered']

def setRemove(self, remove):
if remove:

self.addField('remove')
else:

del self['remove']

def addField(self, name):
itemXML = ET.Element('{%s}%s' % (self.namespace, name))
self.xml.append(itemXML)

class UserStore(object):
def __init__(self):

self.users = {}

def __getitem__(self, jid):
return self.users.get(jid, None)

def register(self, jid, registration):
username = registration['username']

def filter_usernames(user):
return user != jid and self.users[user]['username'] == username

(continues on next page)

48 Chapter 4. Tutorials, FAQs, and How To Guides

Slixmpp Documentation, Release 1.5

(continued from previous page)

conflicts = filter(filter_usernames, self.users.keys())
if conflicts:

return False

self.users[jid] = registration
return True

def unregister(self, jid):
del self.users[jid]

class xep_0077(BasePlugin):
"""
XEP-0077 In-Band Registration
"""

def plugin_init(self):
self.description = "In-Band Registration"
self.xep = "0077"
self.form_fields = ('username', 'password')
self.form_instructions = ""
self.backend = UserStore()

self.xmpp.register_handler(
Callback('In-Band Registration',

MatchXPath('{%s}iq/{jabber:iq:register}query' % self.xmpp.
→˓default_ns),

self.__handleRegistration))
register_stanza_plugin(Iq, Registration)

def post_init(self):
BasePlugin.post_init(self)
self.xmpp['xep_0030'].add_feature("jabber:iq:register")

def __handleRegistration(self, iq):
if iq['type'] == 'get':

Registration form requested
userData = self.backend[iq['from'].bare]
self.sendRegistrationForm(iq, userData)

elif iq['type'] == 'set':
if iq['register']['remove']:

Remove an account
self.backend.unregister(iq['from'].bare)
self.xmpp.event('unregistered_user', iq)
iq.reply().send()
return

for field in self.form_fields:
if not iq['register'][field]:

Incomplete Registration
self._sendError(iq, '406', 'modify', 'not-acceptable',

"Please fill in all fields.")
return

if self.backend.register(iq['from'].bare, iq['register']):
Successful registration
self.xmpp.event('registered_user', iq)
reply = iq.reply()

(continues on next page)

4.4. Creating a Slixmpp Plugin 49

Slixmpp Documentation, Release 1.5

(continued from previous page)

reply.set_payload(iq['register'].xml)
reply.send()

else:
Conflicting registration
self._sendError(iq, '409', 'cancel', 'conflict',

"That username is already taken.")

def setForm(self, *fields):
self.form_fields = fields

def setInstructions(self, instructions):
self.form_instructions = instructions

def sendRegistrationForm(self, iq, userData=None):
reg = iq['register']
if userData is None:

userData = {}
else:

reg['registered'] = True

if self.form_instructions:
reg['instructions'] = self.form_instructions

for field in self.form_fields:
data = userData.get(field, '')
if data:

Add field with existing data
reg[field] = data

else:
Add a blank field
reg.addField(field)

reply = iq.reply()
reply.set_payload(reg.xml)
reply.send()

def _sendError(self, iq, code, error_type, name, text=''):
reply = iq.reply()
reply.set_payload(iq['register'].xml)
reply.error()
reply['error']['code'] = code
reply['error']['type'] = error_type
reply['error']['condition'] = name
reply['error']['text'] = text
reply.send()

50 Chapter 4. Tutorials, FAQs, and How To Guides

Slixmpp Documentation, Release 1.5

4.5 How to Use Stream Features

4.6 How SASL Authentication Works

4.7 Using Stream Handlers and Matchers

4.8 Plugin Guides

4.8.1 XEP-0030: Working with Service Discovery

XMPP networks can be composed of many individual clients, components, and servers. Determining the JIDs for
these entities and the various features they may support is the role of XEP-0030, Service Discovery, or “disco” for
short.

Every XMPP entity may possess what are called nodes. A node is just a name for some aspect of an XMPP entity.
For example, if an XMPP entity provides Ad-Hoc Commands, then it will have a node named http://jabber.
org/protocol/commands which will contain information about the commands provided. Other agents using
these ad-hoc commands will interact with the information provided by this node. Note that the node name is just an
identifier; there is no inherent meaning.

Working with service discovery is about creating and querying these nodes. According to XEP-0030, a node may
contain three types of information: identities, features, and items. (Further, extensible, information types are defined
in XEP-0128, but they are not yet implemented by Slixmpp.) Slixmpp provides methods to configure each of these
node attributes.

Configuring Service Discovery

The design focus for the XEP-0030 plug-in is handling info and items requests in a dynamic fashion, allowing for
complex policy decisions of who may receive information and how much, or use alternate backend storage mechanisms
for all of the disco data. To do this, each action that the XEP-0030 plug-in performs is handed off to what is called a
“node handler,” which is just a callback function. These handlers are arranged in a hierarchy that allows for a single
handler to manage an entire domain of JIDs (say for a component), while allowing other handler functions to override
that global behaviour for certain JIDs, or even further limited to only certain JID and node combinations.

The Dynamic Handler Hierarchy

• global: (JID is None, node is None)

Handlers assigned at this level for an action (such as add_feature) provide a global default behaviour when
the action is performed.

• jid: (JID assigned, node is None)

At this level, handlers provide a default behaviour for actions affecting any node owned by the JID in question.
This level is most useful for component connections; there is effectively no difference between this and the
global level when using a client connection.

• node: (JID assigned, node assigned)

A handler for this level is responsible for carrying out an action for only one node, and is the most specific
handler type available. These types of handlers will be most useful for “special” nodes that require special

4.5. How to Use Stream Features 51

http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0050.html
http://xmpp.org/extensions/xep-0128.html

Slixmpp Documentation, Release 1.5

processing different than others provided by the JID, such as using access control lists, or consolidating data
from other nodes.

Default Static Handlers

The XEP-0030 plug-in provides a default set of handlers that work using in-memory disco stanzas. Each handler
simply performs the appropriate lookup or storage operation using these stanzas without doing any complex operations
such as checking an ACL, etc.

You may find it necessary at some point to revert a particular node or JID to using the default, static handlers. To do
so, use the method restore_defaults(). You may also elect to only convert a given set of actions instead.

Creating a Node Handler

Every node handler receives three arguments: the JID, the node, and a data parameter that will contain the relevant
information for carrying out the handler’s action, typically a dictionary.

The JID will always have a value, defaulting to xmpp.boundjid.full for components or xmpp.boundjid.
bare for clients. The node value may be None or a string.

Only handlers for the actions get_info and get_items need to have return values. For these actions, DiscoInfo
or DiscoItems stanzas are exepected as output. It is also acceptable for handlers for these actions to generate an
XMPPError exception when necessary.

Example Node Handler:

Here is one of the built-in default handlers as an example:

def add_identity(self, jid, node, data):
"""
Add a new identity to the JID/node combination.

The data parameter may provide:
category -- The general category to which the agent belongs.
itype -- A more specific designation with the category.
name -- Optional human readable name for this identity.
lang -- Optional standard xml:lang value.

"""
self.add_node(jid, node)
self.nodes[(jid, node)]['info'].add_identity(

data.get('category', ''),
data.get('itype', ''),
data.get('name', None),
data.get('lang', None))

Adding Identities, Features, and Items

In order to maintain some backwards compatibility, the methods add_identity, add_feature, and add_item
do not follow the method signature pattern of the other API methods (i.e. jid, node, then other options), but rather
retain the parameter orders from previous plug-in versions.

52 Chapter 4. Tutorials, FAQs, and How To Guides

Slixmpp Documentation, Release 1.5

Adding an Identity

Adding an identity may be done using either the older positional notation, or with keyword parameters. The example
below uses the keyword arguments, but in the same order as expected using positional arguments.

xmpp['xep_0030'].add_identity(category='client',
itype='bot',
name='Slixmpp',
node='foo',
jid=xmpp.boundjid.full,
lang='no')

The JID and node values determine which handler will be used to perform the add_identity action.

The lang parameter allows for adding localized versions of identities using the xml:lang attribute.

Adding a Feature

The position ordering for add_feature() is to include the feature, then specify the node and then the JID. The JID
and node values determine which handler will be used to perform the add_feature action.

xmpp['xep_0030'].add_feature(feature='jabber:x:data',
node='foo',
jid=xmpp.boundjid.full)

Adding an Item

The parameters to add_item() are potentially confusing due to the fact that adding an item requires two JID and
node combinations: the JID and node of the item itself, and the JID and node that will own the item.

xmpp['xep_0030'].add_item(jid='myitemjid@example.com',
name='An Item!',
node='owner_node',
subnode='item_node',
ijid=xmpp.boundjid.full)

Note: In this case, the owning JID and node are provided with the parameters ijid and node.

Performing Disco Queries

The methods get_info() and get_items() are used to query remote JIDs and their nodes for disco information.
Since these methods are wrappers for sending Iq stanzas, they also accept all of the parameters of the Iq.send()
method. The get_items() method may also accept the boolean parameter iterator, which when set to True
will return an iterator object using the XEP-0059 plug-in.

info = yield from self['xep_0030'].get_info(jid='foo@example.com',
node='bar',
ifrom='baz@mycomponent.example.com',
timeout=30)

items = self['xep_0030'].get_info(jid='foo@example.com',
(continues on next page)

4.8. Plugin Guides 53

http://xmpp.org/extensions/xep-0059.html

Slixmpp Documentation, Release 1.5

(continued from previous page)

node='bar',
iterator=True)

For more examples on how to use basic disco queries, check the disco_browser.py example in the examples
directory.

Local Queries

In some cases, it may be necessary to query the contents of a node owned by the client itself, or one of a component’s
many JIDs. The same method is used as for normal queries, with two differences. First, the parameter local=True
must be used. Second, the return value will be a DiscoInfo or DiscoItems stanza, not a full Iq stanza.

info = self['xep_0030'].get_info(node='foo', local=True)
items = self['xep_0030'].get_items(jid='somejid@mycomponent.example.com',

node='bar',
local=True)

54 Chapter 4. Tutorials, FAQs, and How To Guides

CHAPTER 5

Slixmpp Architecture and Design

5.1 Slixmpp Architecture

The core of Slixmpp is contained in four classes: XMLStream, BaseXMPP, ClientXMPP, and ComponentXMPP.
Along side this stack is a library for working with XML objects that eliminates most of the tedium of creat-
ing/manipulating XML.

5.1.1 The Foundation: XMLStream

XMLStream is a mostly XMPP-agnostic class whose purpose is to read and write from a bi-directional XML stream.
It also allows for callback functions to execute when XML matching given patterns is received; these callbacks are

55

Slixmpp Documentation, Release 1.5

also referred to as stream handlers. The class also provides a basic eventing system which can be triggered either
manually or on a timed schedule.

The event loop

XMLStream instances inherit the asyncio.BaseProtocol class, and therefore do not have to handle reads and
writes directly, but receive data through data_received() and write data in the socket transport.

Upon receiving data, stream handlers are run immediately, except if they are coroutines, in which case they are
scheduled using asyncio.async().

Event handlers (which are called inside stream handlers) work the same way.

How XML Text is Turned into Action

To demonstrate the flow of information, let’s consider what happens when this bit of XML is received (with an assumed
namespace of jabber:client):

<message to="user@example.com" from="friend@example.net">
<body>Hej!</body>

</message>

1. Convert XML strings into objects.

Incoming text is parsed and converted into XML objects (using ElementTree) which are then wrapped into
what are referred to as Stanza objects. The appropriate class for the new object is determined using a map of
namespaced element names to classes.

Our incoming XML is thus turned into a Message stanza object because the namespaced element name
{jabber:client}message is associated with the class Message.

2. Match stanza objects to callbacks.

These objects are then compared against the stored patterns associated with the registered callback handlers.

Each handler matching our stanza object is then added to a list.

3. Processing callbacks

Every handler in the list is then called with the stanza object as a parameter; if the handler is a
CoroutineCallback then it will be scheduled in the event loop using asyncio.async() instead of
run.

4. Raise Custom Events

Since a stream handler shouldn’t block, if extensive processing for a stanza is required (such as needing to send
and receive an Iq stanza), then custom events must be used. These events are not explicitly tied to the incoming
XML stream and may be raised at any time.

In contrast to stream handlers, these functions are referred to as event handlers.

The code for BaseXMPP._handle_message() follows this pattern, and raises a 'message' event

self.event('message', msg)

5. Process Custom Events

The event handlers are then executed, passing the stanza as the only argument.

56 Chapter 5. Slixmpp Architecture and Design

Slixmpp Documentation, Release 1.5

Note: Events may be raised without needing stanza objects. For example, you could
use self.event('custom', {'a': 'b'}). You don’t even need any arguments: self.
event('no_parameters'). However, every event handler MUST accept at least one argument.

Finally, after a long trek, our message is handed off to the user’s custom handler in order to do awesome stuff:

reply = msg.reply()
reply['body'] = "Hey! This is awesome!"
reply.send()

5.1.2 Raising XMPP Awareness: BaseXMPP

While XMLStream attempts to shy away from anything too XMPP specific, BaseXMPP’s sole purpose is to provide
foundational support for sending and receiving XMPP stanzas. This support includes registering the basic message,
presence, and iq stanzas, methods for creating and sending stanzas, and default handlers for incoming messages and
keeping track of presence notifications.

The plugin system for adding new XEP support is also maintained by BaseXMPP.

5.1.3 ClientXMPP

ClientXMPP extends BaseXMPP with additional logic for connecting to an XMPP server by performing DNS
lookups. It also adds support for stream features such as STARTTLS and SASL.

5.1.4 ComponentXMPP

ComponentXMPP is only a thin layer on top of BaseXMPP that implements the component handshake protocol.

5.2 Plugin Architecture

5.2. Plugin Architecture 57

Slixmpp Documentation, Release 1.5

58 Chapter 5. Slixmpp Architecture and Design

CHAPTER 6

API Reference

6.1 Event Index

changed_status

• Data: Presence

• Source: RosterItem

Triggered when a presence stanza is received from a JID with a show type different than the last presence stanza
from the same JID.

changed_subscription

• Data: Presence

• Source: BaseXMPP

Triggered whenever a presence stanza with a type of subscribe, subscribed, unsubscribe, or
unsubscribed is received.

Note that if the values xmpp.auto_authorize and xmpp.auto_subscribe are set to True or False,
and not None, then Slixmpp will either accept or reject all subscription requests before your event handlers are
called. Set these values to None if you wish to make more complex subscription decisions.

chatstate_active

• Data:

• Source:

chatstate_composing

• Data:

• Source:

chatstate_gone

• Data:

59

Slixmpp Documentation, Release 1.5

• Source:

chatstate_inactive

• Data:

• Source:

chatstate_paused

• Data:

• Source:

connected

• Data: {}

• Source: XMLstream

Signal that a connection has been made with the XMPP server, but a session has not yet been established.

connection_failed

• Data: {} or Failure Stanza if available

• Source: XMLstream

Signal that a connection can not be established after number of attempts.

disco_info

• Data: DiscoInfo

• Source: xep_0030

Triggered whenever a disco#info result stanza is received.

disco_items

• Data: DiscoItems

• Source: xep_0030

Triggered whenever a disco#items result stanza is received.

disconnected

• Data: {}

• Source: XMLstream

Signal that the connection with the XMPP server has been lost.

entity_time

• Data:

• Source:

failed_auth

• Data: {}

• Source: ClientXMPP, xep_0078

Signal that the server has rejected the provided login credentials.

gmail_messages

• Data: Iq

60 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

• Source: gmail_notify

Signal that there are unread emails for the Gmail account associated with the current XMPP account.

gmail_notify

• Data: {}

• Source: gmail_notify

Signal that there are unread emails for the Gmail account associated with the current XMPP account.

got_offline

• Data: Presence

• Source: RosterItem

Signal that an unavailable presence stanza has been received from a JID.

got_online

• Data: Presence

• Source: RosterItem

If a presence stanza is received from a JID which was previously marked as offline, and the presence has a show
type of ‘chat’, ‘dnd’, ‘away’, or ‘xa’, then this event is triggered as well.

groupchat_direct_invite

• Data: Message

• Source: direct

groupchat_invite

• Data:

• Source:

groupchat_message

• Data: Message

• Source: xep_0045

Triggered whenever a message is received from a multi-user chat room.

groupchat_presence

• Data: Presence

• Source: xep_0045

Triggered whenever a presence stanza is received from a user in a multi-user chat room.

groupchat_subject

• Data: Message

• Source: xep_0045

Triggered whenever the subject of a multi-user chat room is changed, or announced when joining a room.

killed

• Data:

• Source:

6.1. Event Index 61

Slixmpp Documentation, Release 1.5

last_activity

• Data:

• Source:

message

• Data: Message

• Source: BaseXMPP

Makes the contents of message stanzas available whenever one is received. Be sure to check the message type
in order to handle error messages.

message_error

• Data: Message

• Source: BaseXMPP

Makes the contents of message stanzas available whenever one is received. Only handler messages with an
error type.

message_form

• Data: Form

• Source: xep_0004

Currently the same as message_xform.

message_xform

• Data: Form

• Source: xep_0004

Triggered whenever a data form is received inside a message.

muc::[room]::got_offline

• Data:

• Source:

muc::[room]::got_online

• Data:

• Source:

muc::[room]::message

• Data:

• Source:

muc::[room]::presence

• Data:

• Source:

presence_available

• Data: Presence

• Source: BaseXMPP

A presence stanza with a type of ‘available’ is received.

62 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

presence_error

• Data: Presence

• Source: BaseXMPP

A presence stanza with a type of ‘error’ is received.

presence_form

• Data: Form

• Source: xep_0004

This event is present in the XEP-0004 plugin code, but is currently not used.

presence_probe

• Data: Presence

• Source: BaseXMPP

A presence stanza with a type of ‘probe’ is received.

presence_subscribe

• Data: Presence

• Source: BaseXMPP

A presence stanza with a type of ‘subscribe’ is received.

presence_subscribed

• Data: Presence

• Source: BaseXMPP

A presence stanza with a type of ‘subscribed’ is received.

presence_unavailable

• Data: Presence

• Source: BaseXMPP

A presence stanza with a type of ‘unavailable’ is received.

presence_unsubscribe

• Data: Presence

• Source: BaseXMPP

A presence stanza with a type of ‘unsubscribe’ is received.

presence_unsubscribed

• Data: Presence

• Source: BaseXMPP

A presence stanza with a type of ‘unsubscribed’ is received.

roster_update

• Data: Roster

• Source: ClientXMPP

An IQ result containing roster entries is received.

6.1. Event Index 63

Slixmpp Documentation, Release 1.5

sent_presence

• Data: {}

• Source: Roster

Signal that an initial presence stanza has been written to the XML stream.

session_end

• Data: {}

• Source: XMLstream

Signal that a connection to the XMPP server has been lost and the current stream session has ended. Currently
equivalent to disconnected, but implementations of XEP-0198: Stream Management distinguish between the
two events.

Plugins that maintain session-based state should clear themselves when this event is fired.

session_start

• Data: {}

• Source: ClientXMPP, ComponentXMPP XEP-0078

Signal that a connection to the XMPP server has been made and a session has been established.

socket_error

• Data: Socket exception object

• Source: XMLstream

stream_error

• Data: StreamError

• Source: BaseXMPP

6.2 ClientXMPP

class slixmpp.clientxmpp.ClientXMPP(jid, password, plugin_config=None, plu-
gin_whitelist=None, escape_quotes=True,
sasl_mech=None, lang=’en’, **kwargs)

Slixmpp’s client class. (Use only for good, not for evil.)

Typical use pattern:

xmpp = ClientXMPP('user@server.tld/resource', 'password')
... Register plugins and event handlers ...
xmpp.connect()
xmpp.process(block=False) # block=True will block the current

thread. By default, block=False

Parameters

• jid – The JID of the XMPP user account.

• password – The password for the XMPP user account.

• plugin_config – A dictionary of plugin configurations.

64 Chapter 6. API Reference

http://xmpp.org/extensions/xep-0198.html

Slixmpp Documentation, Release 1.5

• plugin_whitelist – A list of approved plugins that will be loaded when calling
register_plugins().

• escape_quotes – Deprecated.

connect(address=(), use_ssl=False, force_starttls=True, disable_starttls=False)
Connect to the XMPP server.

When no address is given, a SRV lookup for the server will be attempted. If that fails, the server user in
the JID will be used.

Parameters

• address – A tuple containing the server’s host and port.

• force_starttls – Indicates that negotiation should be aborted if the server does not
advertise support for STARTTLS. Defaults to True.

• disable_starttls – Disables TLS for the connection. Defaults to False.

• use_ssl – Indicates if the older SSL connection method should be used. Defaults to
False.

del_roster_item(jid)
Remove an item from the roster.

This is done by setting its subscription status to 'remove'.

Parameters jid – The JID of the item to remove.

get_roster(callback=None, timeout=None, timeout_callback=None)
Request the roster from the server.

Parameters callback – Reference to a stream handler function. Will be executed when the
roster is received.

register_feature(name, handler, restart=False, order=5000)
Register a stream feature handler.

Parameters

• name – The name of the stream feature.

• handler – The function to execute if the feature is received.

• restart – Indicates if feature processing should halt with this feature. Defaults to
False.

• order – The relative ordering in which the feature should be negotiated. Lower values
will be attempted earlier when available.

update_roster(jid, **kwargs)
Add or change a roster item.

Parameters

• jid – The JID of the entry to modify.

• name – The user’s nickname for this JID.

• subscription – The subscription status. May be one of 'to', 'from', 'both', or
'none'. If set to 'remove', the entry will be deleted.

• groups – The roster groups that contain this item.

• timeout –

6.2. ClientXMPP 65

Slixmpp Documentation, Release 1.5

The length of time (in seconds) to wait for a response before continuing if blocking is
used. Defaults to

response_timeout.

• callback – Optional reference to a stream handler function. Will be executed when the
roster is received. Implies block=False.

6.3 ComponentXMPP

class slixmpp.componentxmpp.ComponentXMPP(jid, secret, host=None, port=None, plu-
gin_config=None, plugin_whitelist=None,
use_jc_ns=False)

Slixmpp’s basic XMPP server component.

Use only for good, not for evil.

Parameters

• jid – The JID of the component.

• secret – The secret or password for the component.

• host – The server accepting the component.

• port – The port used to connect to the server.

• plugin_config – A dictionary of plugin configurations.

• plugin_whitelist – A list of approved plugins that will be loaded when calling
register_plugins().

• use_jc_ns – Indicates if the 'jabber:client' namespace should be used instead of
the standard 'jabber:component:accept' namespace. Defaults to False.

connect(host=None, port=None, use_ssl=False)
Connect to the server.

Parameters

• host – The name of the desired server for the connection. Defaults to server_host.

• port – Port to connect to on the server. Defauts to server_port.

• use_ssl – Flag indicating if SSL should be used by connecting directly to a port using
SSL.

incoming_filter(xml)
Pre-process incoming XML stanzas by converting any 'jabber:client' namespaced elements to the
component’s default namespace.

Parameters xml – The XML stanza to pre-process.

start_stream_handler(xml)
Once the streams are established, attempt to handshake with the server to be accepted as a component.

Parameters xml – The incoming stream’s root element.

66 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

6.4 BaseXMPP

class slixmpp.basexmpp.BaseXMPP(jid=”, default_ns=’jabber:client’, **kwargs)
The BaseXMPP class adapts the generic XMLStream class for use with XMPP. It also provides a plugin mech-
anism to easily extend and add support for new XMPP features.

Parameters default_ns – Ensure that the correct default XML namespace is used during initial-
ization.

Iq(*args, **kwargs)
Create an Iq stanza associated with this stream.

Message(*args, **kwargs)
Create a Message stanza associated with this stream.

Presence(*args, **kwargs)
Create a Presence stanza associated with this stream.

api = None
The API registry is a way to process callbacks based on JID+node combinations. Each callback in the
registry is marked with:

• An API name, e.g. xep_0030

• The name of an action, e.g. get_info

• The JID that will be affected

• The node that will be affected

API handlers with no JID or node will act as global handlers, while those with a JID and no node will
service all nodes for a JID, and handlers with both a JID and node will be used only for that specific
combination. The handler that provides the most specificity will be used.

auto_authorize
Auto accept or deny subscription requests.

If True, auto accept subscription requests. If False, auto deny subscription requests. If None, don’t
automatically respond.

auto_subscribe
Auto send requests for mutual subscriptions.

If True, auto send mutual subscription requests.

boundjid = None
The JabberID (JID) used by this connection, as set after session binding. This may even be a different bare
JID than what was requested.

client_roster = None
The single roster for the bound JID. This is the equivalent of:

self.roster[self.boundjid.bare]

exception(exception)
Process any uncaught exceptions, notably IqError and IqTimeout exceptions.

Parameters exception – An unhandled Exception object.

fulljid
Attribute accessor for full jid

6.4. BaseXMPP 67

http://docs.python.org/3.4/library/exceptions.html#Exception

Slixmpp Documentation, Release 1.5

get(key, default)
Return a plugin given its name, if it has been registered.

is_component = None
The distinction between clients and components can be important, primarily for choosing how to handle
the 'to' and 'from' JIDs of stanzas.

jid
Attribute accessor for bare jid

make_iq(id=0, ifrom=None, ito=None, itype=None, iquery=None)
Create a new Iq stanza with a given Id and from JID.

Parameters

• id – An ideally unique ID value for this stanza thread. Defaults to 0.

• ifrom – The from JID to use for this stanza.

• ito – The destination JID for this stanza.

• itype – The Iq’s type, one of: 'get', 'set', 'result', or 'error'.

• iquery – Optional namespace for adding a query element.

make_iq_error(id, type=’cancel’, condition=’feature-not-implemented’, text=None, ito=None,
ifrom=None, iq=None)

Create an Iq stanza of type 'error'.

Parameters

• id – An ideally unique ID value. May use new_id().

• type – The type of the error, such as 'cancel' or 'modify'. Defaults to 'cancel'.

• condition – The error condition. Defaults to 'feature-not-implemented'.

• text – A message describing the cause of the error.

• ito – The destination JID for this stanza.

• ifrom – The 'from' JID to use for this stanza.

• iq – Optionally use an existing stanza instead of generating a new one.

make_iq_get(queryxmlns=None, ito=None, ifrom=None, iq=None)
Create an Iq stanza of type 'get'.

Optionally, a query element may be added.

Parameters

• queryxmlns – The namespace of the query to use.

• ito – The destination JID for this stanza.

• ifrom – The 'from' JID to use for this stanza.

• iq – Optionally use an existing stanza instead of generating a new one.

make_iq_query(iq=None, xmlns=”, ito=None, ifrom=None)
Create or modify an Iq stanza to use the given query namespace.

Parameters

• iq – Optionally use an existing stanza instead of generating a new one.

• xmlns – The query’s namespace.

68 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

• ito – The destination JID for this stanza.

• ifrom – The 'from' JID to use for this stanza.

make_iq_result(id=None, ito=None, ifrom=None, iq=None)
Create an Iq stanza of type 'result' with the given ID value.

Parameters

• id – An ideally unique ID value. May use new_id().

• ito – The destination JID for this stanza.

• ifrom – The 'from' JID to use for this stanza.

• iq – Optionally use an existing stanza instead of generating a new one.

make_iq_set(sub=None, ito=None, ifrom=None, iq=None)
Create an Iq stanza of type 'set'.

Optionally, a substanza may be given to use as the stanza’s payload.

Parameters

• sub – Either an ElementBase stanza object or an Element XML object to use as the
Iq’s payload.

• ito – The destination JID for this stanza.

• ifrom – The 'from' JID to use for this stanza.

• iq – Optionally use an existing stanza instead of generating a new one.

make_message(mto, mbody=None, msubject=None, mtype=None, mhtml=None, mfrom=None,
mnick=None)

Create and initialize a new Message stanza.

Parameters

• mto – The recipient of the message.

• mbody – The main contents of the message.

• msubject – Optional subject for the message.

• mtype – The message’s type, such as 'chat' or 'groupchat'.

• mhtml – Optional HTML body content in the form of a string.

• mfrom – The sender of the message. if sending from a client, be aware that some servers
require that the full JID of the sender be used.

• mnick – Optional nickname of the sender.

make_presence(pshow=None, pstatus=None, ppriority=None, pto=None, ptype=None,
pfrom=None, pnick=None)

Create and initialize a new Presence stanza.

Parameters

• pshow – The presence’s show value.

• pstatus – The presence’s status message.

• ppriority – This connection’s priority.

• pto – The recipient of a directed presence.

• ptype – The type of presence, such as 'subscribe'.

6.4. BaseXMPP 69

http://docs.python.org/3.4/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

Slixmpp Documentation, Release 1.5

• pfrom – The sender of the presence.

• pnick – Optional nickname of the presence’s sender.

make_query_roster(iq=None)
Create a roster query element.

Parameters iq – Optionally use an existing stanza instead of generating a new one.

max_redirects = None
The maximum number of consecutive see-other-host redirections that will be followed before quitting.

plugin = None
A dictionary mapping plugin names to plugins.

plugin_config = None
Configuration options for whitelisted plugins. If a plugin is registered without any configuration, and there
is an entry here, it will be used.

plugin_whitelist = None
A list of plugins that will be loaded if register_plugins() is called.

process(*, forever=True, timeout=None)
Process all the available XMPP events (receiving or sending data on the socket(s), calling various registered
callbacks, calling expired timers, handling signal events, etc). If timeout is None, this function will run
forever. If timeout is a number, this function will return after the given time in seconds.

register_plugin(plugin, pconfig=None, module=None)
Register and configure a plugin for use in this stream.

Parameters

• plugin – The name of the plugin class. Plugin names must be unique.

• pconfig – A dictionary of configuration data for the plugin. Defaults to an empty dic-
tionary.

• module – Optional refence to the module containing the plugin class if using custom
plugins.

register_plugins()
Register and initialize all built-in plugins.

Optionally, the list of plugins loaded may be limited to those contained in plugin_whitelist.

Plugin configurations stored in plugin_config will be used.

requested_jid = None
The JabberID (JID) requested for this connection.

resource
Attribute accessor for jid resource

roster = None
The main roster object. This roster supports multiple owner JIDs, as in the case for components. For
clients which only have a single JID, see client_roster.

send_message(mto, mbody, msubject=None, mtype=None, mhtml=None, mfrom=None,
mnick=None)

Create, initialize, and send a new Message stanza.

Parameters

• mto – The recipient of the message.

• mbody – The main contents of the message.

70 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

• msubject – Optional subject for the message.

• mtype – The message’s type, such as 'chat' or 'groupchat'.

• mhtml – Optional HTML body content in the form of a string.

• mfrom – The sender of the message. if sending from a client, be aware that some servers
require that the full JID of the sender be used.

• mnick – Optional nickname of the sender.

send_presence(pshow=None, pstatus=None, ppriority=None, pto=None, pfrom=None,
ptype=None, pnick=None)

Create, initialize, and send a new Presence stanza.

Parameters

• pshow – The presence’s show value.

• pstatus – The presence’s status message.

• ppriority – This connection’s priority.

• pto – The recipient of a directed presence.

• ptype – The type of presence, such as 'subscribe'.

• pfrom – The sender of the presence.

• pnick – Optional nickname of the presence’s sender.

send_presence_subscription(pto, pfrom=None, ptype=’subscribe’, pnick=None)
Create, initialize, and send a new Presence stanza of type 'subscribe'.

Parameters

• pto – The recipient of a directed presence.

• pfrom – The sender of the presence.

• ptype – The type of presence, such as 'subscribe'.

• pnick – Optional nickname of the presence’s sender.

sentpresence = None
Flag indicating that the initial presence broadcast has been sent. Until this happens, some servers may not
behave as expected when sending stanzas.

server
Attribute accessor for jid host

set_jid(jid)
Rip a JID apart and claim it as our own.

stanza = None
A reference to slixmpp.stanza to make accessing stanza classes easier.

start_stream_handler(xml)
Save the stream ID once the streams have been established.

Parameters xml – The incoming stream’s root element.

stream_id = None
An identifier for the stream as given by the server.

use_message_ids = None
Messages may optionally be tagged with ID values. Setting use_message_ids to True will assign all
outgoing messages an ID. Some plugin features require enabling this option.

6.4. BaseXMPP 71

Slixmpp Documentation, Release 1.5

use_origin_id = None
XEP-0359 <origin-id/> tag that gets added to <message/> stanzas.

use_presence_ids = None
Presence updates may optionally be tagged with ID values. Setting use_message_ids to True will
assign all outgoing messages an ID.

username
Attribute accessor for jid usernode

6.5 Exceptions

exception slixmpp.exceptions.XMPPError(condition=’undefined-condition’, text=”,
etype=’cancel’, extension=None, exten-
sion_ns=None, extension_args=None, clear=True)

A generic exception that may be raised while processing an XMPP stanza to indicate that an error response
stanza should be sent.

The exception method for stanza objects extending RootStanza will create an error stanza and initialize any
additional substanzas using the extension information included in the exception.

Meant for use in Slixmpp plugins and applications using Slixmpp.

Extension information can be included to add additional XML elements to the generated error stanza.

Parameters

• condition – The XMPP defined error condition. Defaults to
'undefined-condition'.

• text – Human readable text describing the error.

• etype – The XMPP error type, such as 'cancel' or 'modify'. Defaults to
'cancel'.

• extension – Tag name of the extension’s XML content.

• extension_ns – XML namespace of the extensions’ XML content.

• extension_args – Content and attributes for the extension element. Same as the addi-
tional arguments to the Element constructor.

• clear – Indicates if the stanza’s contents should be removed before replying with an error.
Defaults to True.

format()
Format the error in a simple user-readable string.

exception slixmpp.exceptions.IqError(iq)
An exception raised when an Iq stanza of type ‘error’ is received after making a blocking send call.

iq = None
The Iq error result stanza.

exception slixmpp.exceptions.IqTimeout(iq)
An exception which indicates that an IQ request response has not been received within the alloted time window.

iq = None
The Iq stanza whose response did not arrive before the timeout expired.

72 Chapter 6. API Reference

http://docs.python.org/3.4/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

Slixmpp Documentation, Release 1.5

6.6 Jabber IDs (JID)

class slixmpp.jid.JID(jid: Optional[str] = None)
A representation of a Jabber ID, or JID.

Each JID may have three components: a user, a domain, and an optional resource. For example:
user@domain/resource

When a resource is not used, the JID is called a bare JID. The JID is a full JID otherwise.

JID Properties:

full The string value of the full JID.

jid Alias for full.

bare The string value of the bare JID.

node The node portion of the JID.

user Alias for node.

local Alias for node.

username Alias for node.

domain The domain name portion of the JID.

server Alias for domain.

host Alias for domain.

resource The resource portion of the JID.

Parameters jid (string) – A string of the form '[user@]domain[/resource]'.

Raises InvalidJID –

unescape()
Return an unescaped JID object.

Using an unescaped JID is preferred for displaying JIDs to humans, and they should NOT be used for any
other purposes than for presentation.

Returns UnescapedJID

New in version 1.1.10.

6.7 Stanza Objects

The stanzabase module provides a wrapper for the standard ElementTree module that makes working with
XML less painful. Instead of having to manually move up and down an element tree and insert subelements and
attributes, you can interact with an object that behaves like a normal dictionary or JSON object, which silently maps
keys to XML attributes and elements behind the scenes.

6.7.1 Overview

The usefulness of this layer grows as the XML you have to work with becomes nested. The base unit here,
ElementBase, can map to a single XML element, or several depending on how advanced of a mapping is desired
from interface keys to XML structures. For example, a single ElementBase derived class could easily describe:

6.6. Jabber IDs (JID) 73

mailto:user@domain/resource
http://docs.python.org/3.4/library/xml.etree.elementtree.html#module-xml.etree.ElementTree

Slixmpp Documentation, Release 1.5

<message to="user@example.com" from="friend@example.com">
<body>Hi!</body>
<x:extra>
<x:item>Custom item 1</x:item>
<x:item>Custom item 2</x:item>
<x:item>Custom item 3</x:item>

</x:extra>
</message>

If that chunk of XML were put in the ElementBase instance msg, we could extract the data from the XML using:

>>> msg['extra']
['Custom item 1', 'Custom item 2', 'Custom item 3']

Provided we set up the handler for the 'extra' interface to load the <x:item> element content into a list.

The key concept is that given an XML structure that will be repeatedly used, we can define a set of interfaces which
when we read from, write to, or delete, will automatically manipulate the underlying XML as needed. In addition,
some of these interfaces may in turn reference child objects which expose interfaces for particularly complex child
elements of the original XML chunk.

See also:

Defining Stanza Interfaces.

Because the stanzabase module was developed as part of an XMPP library, these chunks of XML are referred to as
stanzas, and in Slixmpp we refer to a subclass of ElementBase which defines the interfaces needed for interacting
with a given stanza a stanza object.

To make dealing with more complicated and nested stanzas or XML chunks easier, stanza objects can be composed in
two ways: as iterable child objects or as plugins. Iterable child stanzas, or substanzas, are accessible through a special
'substanzas' interface. This option is useful for stanzas which may contain more than one of the same kind of
element. When there is only one child element, the plugin method is more useful. For plugins, a parent stanza object
delegates one of its XML child elements to the plugin stanza object. Here is an example:

<iq type="result">
<query xmlns="http://jabber.org/protocol/disco#info">
<identity category="client" type="bot" name="Slixmpp Bot" />

</query>
</iq>

We can can arrange this stanza into two objects: an outer, wrapper object for dealing with the <iq /> element and
its attributes, and a plugin object to control the <query /> payload element. If we give the plugin object the name
'disco_info' (using its ElementBase.plugin_attrib value), then we can access the plugin as so:

>>> iq['disco_info']
'<query xmlns="http://jabber.org/protocol/disco#info">

<identity category="client" type="bot" name="Slixmpp Bot" />
</query>'

We can then drill down through the plugin object’s interfaces as desired:

>>> iq['disco_info']['identities']
[('client', 'bot', 'Slixmpp Bot')]

Plugins may also add new interfaces to the parent stanza object as if they had been defined by the parent directly, and
can also override the behaviour of an interface defined by the parent.

See also:

74 Chapter 6. API Reference

http://xmpp.org

Slixmpp Documentation, Release 1.5

• Creating Stanza Plugins

• Creating a Stanza Extension

• Overriding a Parent Stanza

6.7.2 Registering Stanza Plugins

slixmpp.xmlstream.stanzabase.register_stanza_plugin(stanza, plugin, iterable=False,
overrides=False)

Associate a stanza object as a plugin for another stanza.

>>> from slixmpp.xmlstream import register_stanza_plugin
>>> register_stanza_plugin(Iq, CustomStanza)

Plugin stanzas marked as iterable will be included in the list of substanzas for the parent, using
parent['substanzas']. If the attribute plugin_multi_attrib was defined for the plugin, then
the substanza set can be filtered to only instances of the plugin class. For example, given a plugin class Foo
with plugin_multi_attrib = 'foos' then:

parent['foos']

would return a collection of all Foo substanzas.

Parameters

• stanza (class) – The class of the parent stanza.

• plugin (class) – The class of the plugin stanza.

• iterable (bool) – Indicates if the plugin stanza should be included in the parent stanza’s
iterable 'substanzas' interface results.

• overrides (bool) – Indicates if the plugin should be allowed to override the interface
handlers for the parent stanza, based on the plugin’s overrides field.

New in version 1.0-Beta1: Made register_stanza_plugin the default name. The prior
registerStanzaPlugin function name remains as an alias.

6.7.3 ElementBase

class slixmpp.xmlstream.stanzabase.ElementBase(xml=None, parent=None)
The core of Slixmpp’s stanza XML manipulation and handling is provided by ElementBase. ElementBase wraps
XML ElementTree objects and enables access to the XML contents through dictionary syntax, similar in style
to the Ruby XMPP library Blather’s stanza implementation.

Stanzas are defined by their name, namespace, and interfaces. For example, a simplistic Message stanza could
be defined as:

>>> class Message(ElementBase):
... name = "message"
... namespace = "jabber:client"
... interfaces = {'to', 'from', 'type', 'body'}
... sub_interfaces = {'body'}

The resulting Message stanza’s contents may be accessed as so:

6.7. Stanza Objects 75

Slixmpp Documentation, Release 1.5

>>> message['to'] = "user@example.com"
>>> message['body'] = "Hi!"
>>> message['body']
"Hi!"
>>> del message['body']
>>> message['body']
""

The interface values map to either custom access methods, stanza XML attributes, or (if the interface is also in
sub_interfaces) the text contents of a stanza’s subelement.

Custom access methods may be created by adding methods of the form “getInterface”, “setInterface”, or “delIn-
terface”, where “Interface” is the titlecase version of the interface name.

Stanzas may be extended through the use of plugins. A plugin is simply a stanza that has a plugin_attrib value.
For example:

>>> class MessagePlugin(ElementBase):
... name = "custom_plugin"
... namespace = "custom"
... interfaces = {'useful_thing', 'custom'}
... plugin_attrib = "custom"

The plugin stanza class must be associated with its intended container stanza by using register_stanza_plugin as
so:

>>> register_stanza_plugin(Message, MessagePlugin)

The plugin may then be accessed as if it were built-in to the parent stanza:

>>> message['custom']['useful_thing'] = 'foo'

If a plugin provides an interface that is the same as the plugin’s plugin_attrib value, then the plugin’s interface
may be assigned directly from the parent stanza, as shown below, but retrieving information will require all
interfaces to be used, as so:

>>> # Same as using message['custom']['custom']
>>> message['custom'] = 'bar'
>>> # Must use all interfaces
>>> message['custom']['custom']
'bar'

If the plugin sets is_extension to True, then both setting and getting an interface value that is the same as
the plugin’s plugin_attrib value will work, as so:

>>> message['custom'] = 'bar' # Using is_extension=True
>>> message['custom']
'bar'

Parameters

• xml – Initialize the stanza object with an existing XML object.

• parent – Optionally specify a parent stanza object will contain this substanza.

__bool__()
Stanza objects should be treated as True in boolean contexts.

76 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

__copy__()
Return a copy of the stanza object that does not share the same underlying XML object.

__delitem__(attrib)
Delete the value of a stanza interface using dict-like syntax.

Example:

>>> msg['body'] = "Hi!"
>>> msg['body']
'Hi!'
>>> del msg['body']
>>> msg['body']
''

Stanza interfaces are typically mapped directly to the underlyig XML object, but can be overridden by the
presence of a del_attrib method (or del_foo where the interface is named 'foo', etc).

The effect of deleting a stanza interface value named foo will be one of:

1. Call del_foo override handler, if it exists.

2. Call del_foo, if it exists.

3. Call delFoo, if it exists.

4. Delete foo element, if 'foo' is in sub_interfaces.

5. Remove foo element if 'foo' is in bool_interfaces.

6. Delete top level XML attribute named foo.

7. Remove the foo plugin, if it was loaded.

8. Do nothing.

Parameters attrib – The name of the affected stanza interface.

__eq__(other)
Compare the stanza object with another to test for equality.

Stanzas are equal if their interfaces return the same values, and if they are both instances of ElementBase.

Parameters other (ElementBase) – The stanza object to compare against.

__getitem__(full_attrib)
Return the value of a stanza interface using dict-like syntax.

Example:

>>> msg['body']
'Message contents'

Stanza interfaces are typically mapped directly to the underlying XML object, but can be overridden by
the presence of a get_attrib method (or get_foo where the interface is named 'foo', etc).

The search order for interface value retrieval for an interface named 'foo' is:

1. The list of substanzas ('substanzas')

2. The result of calling the get_foo override handler.

3. The result of calling get_foo.

4. The result of calling getFoo.

6.7. Stanza Objects 77

Slixmpp Documentation, Release 1.5

5. The contents of the foo subelement, if foo is listed in sub_interfaces.

6. True or False depending on the existence of a foo subelement and foo is in bool_interfaces.

7. The value of the foo attribute of the XML object.

8. The plugin named 'foo'

9. An empty string.

Parameters full_attrib (string) – The name of the requested stanza interface.

__init__(xml=None, parent=None)
Initialize self. See help(type(self)) for accurate signature.

__iter__()
Return an iterator object for the stanza’s substanzas.

The iterator is the stanza object itself. Attempting to use two iterators on the same stanza at the same time
is discouraged.

__len__()
Return the number of iterable substanzas in this stanza.

__ne__(other)
Compare the stanza object with another to test for inequality.

Stanzas are not equal if their interfaces return different values, or if they are not both instances of Element-
Base.

Parameters other (ElementBase) – The stanza object to compare against.

__next__()
Return the next iterable substanza.

__repr__()
Use the stanza’s serialized XML as its representation.

__setitem__(attrib, value)
Set the value of a stanza interface using dictionary-like syntax.

Example:

>>> msg['body'] = "Hi!"
>>> msg['body']
'Hi!'

Stanza interfaces are typically mapped directly to the underlying XML object, but can be overridden by
the presence of a set_attrib method (or set_foo where the interface is named 'foo', etc).

The effect of interface value assignment for an interface named 'foo' will be one of:

1. Delete the interface’s contents if the value is None.

2. Call the set_foo override handler, if it exists.

3. Call set_foo, if it exists.

4. Call setFoo, if it exists.

5. Set the text of a foo element, if 'foo' is in sub_interfaces.

6. Add or remove an empty subelement foo if foo is in bool_interfaces.

7. Set the value of a top level XML attribute named foo.

78 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

8. Attempt to pass the value to a plugin named 'foo' using the plugin’s 'foo' interface.

9. Do nothing.

Parameters

• attrib (string) – The name of the stanza interface to modify.

• value – The new value of the stanza interface.

__str__(top_level_ns=True)
Return a string serialization of the underlying XML object.

See also:

XML Serialization

Parameters top_level_ns (bool) – Display the top-most namespace. Defaults to True.

__weakref__
list of weak references to the object (if defined)

_del_attr(name)
Remove a top level attribute of the XML object.

Parameters name – The name of the attribute.

_del_sub(name, all=False, lang=None)
Remove sub elements that match the given name or XPath.

If the element is in a path, then any parent elements that become empty after deleting the element may also
be deleted if requested by setting all=True.

Parameters

• name – The name or XPath expression for the element(s) to remove.

• all (bool) – If True, remove all empty elements in the path to the deleted element.
Defaults to False.

_get_attr(name, default=”)
Return the value of a top level attribute of the XML object.

In case the attribute has not been set, a default value can be returned instead. An empty string is returned
if no other default is supplied.

Parameters

• name – The name of the attribute.

• default – Optional value to return if the attribute has not been set. An empty string is
returned otherwise.

_get_stanza_values()
Return A JSON/dictionary version of the XML content exposed through the stanza’s interfaces:

>>> msg = Message()
>>> msg.values
{'body': '', 'from': , 'mucnick': '', 'mucroom': '',
'to': , 'type': 'normal', 'id': '', 'subject': ''}

Likewise, assigning to values will change the XML content:

6.7. Stanza Objects 79

Slixmpp Documentation, Release 1.5

>>> msg = Message()
>>> msg.values = {'body': 'Hi!', 'to': 'user@example.com'}
>>> msg
'<message to="user@example.com"><body>Hi!</body></message>'

New in version 1.0-Beta1.

_get_sub_text(name, default=”, lang=None)
Return the text contents of a sub element.

In case the element does not exist, or it has no textual content, a default value can be returned instead. An
empty string is returned if no other default is supplied.

Parameters

• name – The name or XPath expression of the element.

• default – Optional default to return if the element does not exists. An empty string is
returned otherwise.

_set_attr(name, value)
Set the value of a top level attribute of the XML object.

If the new value is None or an empty string, then the attribute will be removed.

Parameters

• name – The name of the attribute.

• value – The new value of the attribute, or None or ‘’ to remove it.

_set_stanza_values(values)
Set multiple stanza interface values using a dictionary.

Stanza plugin values may be set using nested dictionaries.

Parameters values – A dictionary mapping stanza interface with values. Plugin interfaces
may accept a nested dictionary that will be used recursively.

New in version 1.0-Beta1.

_set_sub_text(name, text=None, keep=False, lang=None)
Set the text contents of a sub element.

In case the element does not exist, a element will be created, and its text contents will be set.

If the text is set to an empty string, or None, then the element will be removed, unless keep is set to True.

Parameters

• name – The name or XPath expression of the element.

• text – The new textual content of the element. If the text is an empty string or None, the
element will be removed unless the parameter keep is True.

• keep – Indicates if the element should be kept if its text is removed. Defaults to False.

append(item)
Append either an XML object or a substanza to this stanza object.

If a substanza object is appended, it will be added to the list of iterable stanzas.

Allows stanza objects to be used like lists.

Parameters item – Either an XML object or a stanza object to add to this stanza’s contents.

80 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

appendxml(xml)
Append an XML object to the stanza’s XML.

The added XML will not be included in the list of iterable substanzas.

Parameters xml (XML) – The XML object to add to the stanza.

bool_interfaces = {}
A subset of interfaces which maps the presence of subelements to boolean values. Using this set
allows for quickly checking for the existence of empty subelements like <required />.

New in version 1.1.

clear()
Remove all XML element contents and plugins.

Any attribute values will be preserved.

enable(attrib, lang=None)
Enable and initialize a stanza plugin.

Alias for init_plugin().

Parameters attrib (string) – The plugin_attrib value of the plugin to enable.

get(key, default=None)
Return the value of a stanza interface.

If the found value is None or an empty string, return the supplied default value.

Allows stanza objects to be used like dictionaries.

Parameters

• key (string) – The name of the stanza interface to check.

• default – Value to return if the stanza interface has a value of None or "". Will default
to returning None.

get_stanza_values()
Return A JSON/dictionary version of the XML content exposed through the stanza’s interfaces:

>>> msg = Message()
>>> msg.values
{'body': '', 'from': , 'mucnick': '', 'mucroom': '',
'to': , 'type': 'normal', 'id': '', 'subject': ''}

Likewise, assigning to values will change the XML content:

>>> msg = Message()
>>> msg.values = {'body': 'Hi!', 'to': 'user@example.com'}
>>> msg
'<message to="user@example.com"><body>Hi!</body></message>'

New in version 1.0-Beta1.

init_plugin(attrib, lang=None, existing_xml=None, reuse=True)
Enable and initialize a stanza plugin.

Parameters attrib (string) – The plugin_attrib value of the plugin to enable.

interfaces = {'from', 'id', 'payload', 'to', 'type'}
The set of keys that the stanza provides for accessing and manipulating the underlying XML object. This
set may be augmented with the plugin_attrib value of any registered stanza plugins.

6.7. Stanza Objects 81

Slixmpp Documentation, Release 1.5

is_extension = False
If you need to add a new interface to an existing stanza, you can create a plugin and set is_extension
= True. Be sure to set the plugin_attrib value to the desired interface name, and that it is the only
interface listed in interfaces. Requests for the new interface from the parent stanza will be passed to
the plugin directly.

New in version 1.0-Beta5.

iterables = None
A list of child stanzas whose class is included in plugin_iterables.

keys()
Return the names of all stanza interfaces provided by the stanza object.

Allows stanza objects to be used like dictionaries.

lang_interfaces = {}
New in version 1.1.2.

match(xpath)
Compare a stanza object with an XPath-like expression.

If the XPath matches the contents of the stanza object, the match is successful.

The XPath expression may include checks for stanza attributes. For example:

'presence@show=xa@priority=2/status'

Would match a presence stanza whose show value is set to 'xa', has a priority value of '2', and has a
status element.

Parameters xpath (string) – The XPath expression to check against. It may be either a
string or a list of element names with attribute checks.

name = 'stanza'
The XML tag name of the element, not including any namespace prefixes. For example, an
ElementBase object for <message /> would use name = 'message'.

namespace = 'jabber:client'
The XML namespace for the element. Given <foo xmlns="bar" />, then namespace = "bar"
should be used. The default namespace is jabber:client since this is being used in an XMPP library.

next()
Return the next iterable substanza.

overrides = []
In some cases you may wish to override the behaviour of one of the parent stanza’s interfaces. The
overrides list specifies the interface name and access method to be overridden. For example, to override
setting the parent’s 'condition' interface you would use:

overrides = ['set_condition']

Getting and deleting the 'condition' interface would not be affected.

New in version 1.0-Beta5.

parent = None
A weakref.weakref to the parent stanza, if there is one. If not, then parent is None.

plugin_attrib = 'plugin'
For ElementBase subclasses which are intended to be used as plugins, the plugin_attrib value
defines the plugin name. Plugins may be accessed by using the plugin_attrib value as the interface.
An example using plugin_attrib = 'foo':

82 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

register_stanza_plugin(Message, FooPlugin)
msg = Message()
msg['foo']['an_interface_from_the_foo_plugin']

plugin_attrib_map = {}
A mapping of the plugin_attrib values of registered plugins to their respective classes.

plugin_iterables = {}
The set of stanza classes that can be iterated over using the ‘substanzas’ interface. Classes are added to
this set when registering a plugin with iterable=True:

register_stanza_plugin(DiscoInfo, DiscoItem, iterable=True)

New in version 1.0-Beta5.

plugin_multi_attrib = ''
For ElementBase subclasses that are intended to be an iterable group of items, the
plugin_multi_attrib value defines an interface for the parent stanza which returns the entire group
of matching substanzas. So the following are equivalent:

Given stanza class Foo, with plugin_multi_attrib = 'foos'
parent['foos']
filter(isinstance(item, Foo), parent['substanzas'])

plugin_overrides = {}
A map of interface operations to the overriding functions. For example, after overriding the set operation
for the interface body, plugin_overrides would be:

{'set_body': <some function>}

plugin_tag_map = {}
A mapping of root element tag names (in '{namespace}elementname' format) to the plugin classes
responsible for them.

plugins = None
An ordered dictionary of plugin stanzas, mapped by their plugin_attrib value.

pop(index=0)
Remove and return the last substanza in the list of iterable substanzas.

Allows stanza objects to be used like lists.

Parameters index (int) – The index of the substanza to remove.

set_stanza_values(values)
Set multiple stanza interface values using a dictionary.

Stanza plugin values may be set using nested dictionaries.

Parameters values – A dictionary mapping stanza interface with values. Plugin interfaces
may accept a nested dictionary that will be used recursively.

New in version 1.0-Beta1.

setup(xml=None)
Initialize the stanza’s XML contents.

Will return True if XML was generated according to the stanza’s definition instead of building a stanza
object from an existing XML object.

6.7. Stanza Objects 83

Slixmpp Documentation, Release 1.5

Parameters xml – An existing XML object to use for the stanza’s content instead of generating
new XML.

sub_interfaces = {}
A subset of interfaces which maps interfaces to direct subelements of the underlying XML object.
Using this set, the text of these subelements may be set, retrieved, or removed without needing to define
custom methods.

tag = None
The name of the tag for the stanza’s root element. It is the same as calling tag_name() and is formatted
as '{namespace}elementname'.

classmethod tag_name()
Return the namespaced name of the stanza’s root element.

The format for the tag name is:

'{namespace}elementname'

For example, for the stanza <foo xmlns="bar" />, stanza.tag_name() would return
"{bar}foo".

values
Return A JSON/dictionary version of the XML content exposed through the stanza’s interfaces:

>>> msg = Message()
>>> msg.values
{'body': '', 'from': , 'mucnick': '', 'mucroom': '',
'to': , 'type': 'normal', 'id': '', 'subject': ''}

Likewise, assigning to values will change the XML content:

>>> msg = Message()
>>> msg.values = {'body': 'Hi!', 'to': 'user@example.com'}
>>> msg
'<message to="user@example.com"><body>Hi!</body></message>'

New in version 1.0-Beta1.

xml = None
The underlying XML object for the stanza. It is a standard xml.etree.ElementTree object.

xml_ns = 'http://www.w3.org/XML/1998/namespace'
The default XML namespace: http://www.w3.org/XML/1998/namespace.

6.7.4 StanzaBase

class slixmpp.xmlstream.stanzabase.StanzaBase(stream=None, xml=None, stype=None,
sto=None, sfrom=None, sid=None, par-
ent=None)

StanzaBase provides the foundation for all other stanza objects used by Slixmpp, and defines a basic set of in-
terfaces common to nearly all stanzas. These interfaces are the 'id', 'type', 'to', and 'from' attributes.
An additional interface, 'payload', is available to access the XML contents of the stanza. Most stanza objects
will provided more specific interfaces, however.

Stanza Interfaces:

id An optional id value that can be used to associate stanzas

to A JID object representing the recipient’s JID.

84 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

from A JID object representing the sender’s JID. with their replies.

type The type of stanza, typically will be 'normal', 'error', 'get', or 'set', etc.

payload The XML contents of the stanza.

Parameters

• stream (XMLStream) – Optional slixmpp.xmlstream.XMLStream object respon-
sible for sending this stanza.

• xml (XML) – Optional XML contents to initialize stanza values.

• stype (string) – Optional stanza type value.

• sto – Optional string or slixmpp.xmlstream.JID object of the recipient’s JID.

• sfrom – Optional string or slixmpp.xmlstream.JID object of the sender’s JID.

• sid (string) – Optional ID value for the stanza.

• parent – Optionally specify a parent stanza object will contain this substanza.

del_payload()
Remove the XML contents of the stanza.

error()
Set the stanza’s type to 'error'.

exception(e)
Handle exceptions raised during stanza processing.

Meant to be overridden.

get_from()
Return the value of the stanza’s 'from' attribute.

get_payload()
Return a list of XML objects contained in the stanza.

get_to()
Return the value of the stanza’s 'to' attribute.

namespace = 'jabber:client'
The default XMPP client namespace

reply(clear=True)
Prepare the stanza for sending a reply.

Swaps the 'from' and 'to' attributes.

If clear=True, then also remove the stanza’s contents to make room for the reply content.

For client streams, the 'from' attribute is removed.

Parameters clear (bool) – Indicates if the stanza’s contents should be removed. Defaults to
True.

send()
Queue the stanza to be sent on the XML stream.

Parameters now (bool) – Indicates if the queue should be skipped and the stanza sent imme-
diately. Useful for stream initialization. Defaults to False.

set_from(value)
Set the ‘from’ attribute of the stanza.

6.7. Stanza Objects 85

Slixmpp Documentation, Release 1.5

Parameters from (str or JID) – A string or JID object representing the sender’s JID.

set_payload(value)
Add XML content to the stanza.

Parameters value – Either an XML or a stanza object, or a list of XML or stanza objects.

set_to(value)
Set the 'to' attribute of the stanza.

Parameters value – A string or slixmpp.xmlstream.JID object representing the recip-
ient’s JID.

set_type(value)
Set the stanza’s 'type' attribute.

Only type values contained in types are accepted.

Parameters value (str) – One of the values contained in types

unhandled()
Called if no handlers have been registered to process this stanza.

Meant to be overridden.

6.8 Stanza Handlers

6.8.1 The Basic Handler

class slixmpp.xmlstream.handler.base.BaseHandler(name, matcher, stream=None)
Base class for stream handlers. Stream handlers are matched with incoming stanzas so that the stanza may be
processed in some way. Stanzas may be matched with multiple handlers.

Handler execution may take place in two phases: during the incoming stream processing, and in the main event
loop. The prerun() method is executed in the first case, and run() is called during the second.

Parameters

• name (string) – The name of the handler.

• matcher – A MatcherBase derived object that will be used to determine if a stanza
should be accepted by this handler.

• stream – The XMLStream instance that the handle will respond to.

check_delete()
Check if the handler should be removed from the list of stream handlers.

match(xml)
Compare a stanza or XML object with the handler’s matcher.

Parameters xml – An XML or ElementBase object

name = None
The name of the handler

prerun(payload)
Prepare the handler for execution while the XML stream is being processed.

Parameters payload – A ElementBase object.

86 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

run(payload)
Execute the handler after XML stream processing and during the main event loop.

Parameters payload – A ElementBase object.

stream = None
The XML stream this handler is assigned to

6.8.2 Callback

class slixmpp.xmlstream.handler.Callback(name, matcher, pointer, thread=False,
once=False, instream=False, stream=None)

The Callback handler will execute a callback function with matched stanzas.

The handler may execute the callback either during stream processing or during the main event loop.

Callback functions are all executed in the same thread, so be aware if you are executing functions that will
block for extended periods of time. Typically, you should signal your own events using the Slixmpp object’s
event() method to pass the stanza off to a threaded event handler for further processing.

Parameters

• name (string) – The name of the handler.

• matcher – A MatcherBase derived object for matching stanza objects.

• pointer – The function to execute during callback.

• thread (bool) – DEPRECATED. Remains only for backwards compatibility.

• once (bool) – Indicates if the handler should be used only once. Defaults to False.

• instream (bool) – Indicates if the callback should be executed during stream processing
instead of in the main event loop.

• stream – The XMLStream instance this handler should monitor.

prerun(payload)
Execute the callback during stream processing, if the callback was created with instream=True.

Parameters payload – The matched ElementBase object.

run(payload, instream=False)
Execute the callback function with the matched stanza payload.

Parameters

• payload – The matched ElementBase object.

• instream (bool) – Force the handler to execute during stream processing. This should
only be used by prerun(). Defaults to False.

6.8.3 CoroutineCallback

class slixmpp.xmlstream.handler.CoroutineCallback(name, matcher, pointer,
once=False, instream=False,
stream=None)

The Callback handler will execute a callback function with matched stanzas.

The handler may execute the callback either during stream processing or during the main event loop.

The event will be scheduled to be run soon in the event loop instead of immediately.

6.8. Stanza Handlers 87

Slixmpp Documentation, Release 1.5

Parameters

• name (string) – The name of the handler.

• matcher – A MatcherBase derived object for matching stanza objects.

• pointer – The function to execute during callback. If pointer is not a coroutine, this
function will raise a ValueError.

• once (bool) – Indicates if the handler should be used only once. Defaults to False.

• instream (bool) – Indicates if the callback should be executed during stream processing
instead of in the main event loop.

• stream – The XMLStream instance this handler should monitor.

prerun(payload)
Execute the callback during stream processing, if the callback was created with instream=True.

Parameters payload – The matched ElementBase object.

run(payload, instream=False)
Execute the callback function with the matched stanza payload.

Parameters

• payload – The matched ElementBase object.

• instream (bool) – Force the handler to execute during stream processing. This should
only be used by prerun(). Defaults to False.

6.8.4 Waiter

class slixmpp.xmlstream.handler.Waiter(name, matcher, stream=None)
The Waiter handler allows an event handler to block until a particular stanza has been received. The handler will
either be given the matched stanza, or False if the waiter has timed out.

Parameters

• name (string) – The name of the handler.

• matcher – A MatcherBase derived object for matching stanza objects.

• stream – The XMLStream instance this handler should monitor.

check_delete()
Always remove waiters after use.

prerun(payload)
Store the matched stanza when received during processing.

Parameters payload – The matched ElementBase object.

run(payload)
Do not process this handler during the main event loop.

wait(timeout=None)
Block an event handler while waiting for a stanza to arrive.

Be aware that this will impact performance if called from a non-threaded event handler.

Will return either the received stanza, or False if the waiter timed out.

Parameters timeout (int) – The number of seconds to wait for the stanza to arrive. Defaults
to the the stream’s response_timeout value.

88 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

6.9 Stanza Matchers

6.9.1 The Basic Matcher

class slixmpp.xmlstream.matcher.base.MatcherBase(criteria)
Base class for stanza matchers. Stanza matchers are used to pick stanzas out of the XML stream and pass them
to the appropriate stream handlers.

Parameters criteria – Object to compare some aspect of a stanza against.

match(xml)
Check if a stanza matches the stored criteria.

Meant to be overridden.

6.9.2 ID Matching

class slixmpp.xmlstream.matcher.id.MatcherId(criteria)
The ID matcher selects stanzas that have the same stanza ‘id’ interface value as the desired ID.

match(xml)
Compare the given stanza’s 'id' attribute to the stored id value.

Parameters xml – The ElementBase stanza to compare against.

6.9.3 Stanza Path Matching

class slixmpp.xmlstream.matcher.stanzapath.StanzaPath(criteria)
The StanzaPath matcher selects stanzas that match a given “stanza path”, which is similar to a normal XPath
except that it uses the interfaces and plugins of the stanza instead of the actual, underlying XML.

Parameters criteria – Object to compare some aspect of a stanza against.

match(stanza)
Compare a stanza against a “stanza path”. A stanza path is similar to an XPath expression, but uses
the stanza’s interfaces and plugins instead of the underlying XML. See the documentation for the stanza
match() method for more information.

Parameters stanza – The ElementBase stanza to compare against.

6.9.4 XPath

class slixmpp.xmlstream.matcher.xpath.MatchXPath(criteria)
The XPath matcher selects stanzas whose XML contents matches a given XPath expression.

Warning: Using this matcher may not produce expected behavior when using attribute selectors. For
Python 2.6 and 3.1, the ElementTree find() method does not support the use of attribute selectors. If you
need to support Python 2.6 or 3.1, it might be more useful to use a StanzaPath matcher.

If the value of IGNORE_NS is set to True, then XPath expressions will be matched without using namespaces.

6.9. Stanza Matchers 89

http://docs.python.org/3.4/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element.find

Slixmpp Documentation, Release 1.5

match(xml)
Compare a stanza’s XML contents to an XPath expression.

If the value of IGNORE_NS is set to True, then XPath expressions will be matched without using names-
paces.

Warning: In Python 2.6 and 3.1 the ElementTree find()method does not support attribute selectors
in the XPath expression.

Parameters xml – The ElementBase stanza to compare against.

6.9.5 XMLMask

class slixmpp.xmlstream.matcher.xmlmask.MatchXMLMask(criteria, de-
fault_ns=’jabber:client’)

The XMLMask matcher selects stanzas whose XML matches a given XML pattern, or mask. For example,
message stanzas with body elements could be matched using the mask:

<message xmlns="jabber:client"><body /></message>

Use of XMLMask is discouraged, and MatchXPath or StanzaPath should be used instead.

Parameters criteria – Either an Element XML object or XML string to use as a mask.

match(xml)
Compare a stanza object or XML object against the stored XML mask.

Overrides MatcherBase.match.

Parameters xml – The stanza object or XML object to compare against.

setDefaultNS(ns)
Set the default namespace to use during comparisons.

Parameters ns – The new namespace to use as the default.

6.10 XML Stream

class slixmpp.xmlstream.xmlstream.XMLStream(host=”, port=0)
An XML stream connection manager and event dispatcher.

The XMLStream class abstracts away the issues of establishing a connection with a server and sending and
receiving XML “stanzas”. A stanza is a complete XML element that is a direct child of a root document element.
Two streams are used, one for each communication direction, over the same socket. Once the connection is
closed, both streams should be complete and valid XML documents.

Three types of events are provided to manage the stream:

Stream Triggered based on received stanzas, similar in concept to events in a SAX XML parser.

Custom Triggered manually.

Scheduled Triggered based on time delays.

Typically, stanzas are first processed by a stream event handler which will then trigger custom events to continue
further processing, especially since custom event handlers may run in individual threads.

90 Chapter 6. API Reference

http://docs.python.org/3.4/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element.find
http://docs.python.org/3.4/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

Slixmpp Documentation, Release 1.5

Parameters

• socket – Use an existing socket for the stream. Defaults to None to generate a new socket.

• host (string) – The name of the target server.

• port (int) – The port to use for the connection. Defaults to 0.

abort()
Forcibly close the connection

add_event_handler(name, pointer, disposable=False)
Add a custom event handler that will be executed whenever its event is manually triggered.

Parameters

• name – The name of the event that will trigger this handler.

• pointer – The function to execute.

• disposable – If set to True, the handler will be discarded after one use. Defaults to
False.

add_filter(mode, handler, order=None)
Add a filter for incoming or outgoing stanzas.

These filters are applied before incoming stanzas are passed to any handlers, and before outgoing stanzas
are put in the send queue.

Each filter must accept a single stanza, and return either a stanza or None. If the filter returns None, then
the stanza will be dropped from being processed for events or from being sent.

Parameters

• mode – One of 'in' or 'out'.

• handler – The filter function.

• order (int) – The position to insert the filter in the list of active filters.

address = None
The desired, or actual, address of the connected server.

ca_certs = None
Path to a file containing certificates for verifying the server SSL certificate. A non-None value will trigger
certificate checking.

Note: On Mac OS X, certificates in the system keyring will be consulted, even if they are not in the
provided file.

cancel_connection_attempt()
Immediately cancel the current create_connection() Future. This is useful when a client using slixmpp
tries to connect on flaky networks, where sometimes a connection just gets lost and it needs to reconnect
while the attempt is still ongoing.

certfile = None
Path to a file containing a client certificate to use for authenticating via SASL EXTERNAL. If set, there
must also be a corresponding :attr:keyfile value.

ciphers = None
The list of accepted ciphers, in OpenSSL Format. It might be useful to override it for improved security
over the python defaults.

6.10. XML Stream 91

Slixmpp Documentation, Release 1.5

configure_dns(resolver, domain=None, port=None)
Configure and set options for a Resolver instance, and other DNS related tasks. For example, you can
also check getaddrinfo() to see if you need to call out to libresolv.so.2 to run res_init().

Meant to be overridden.

Parameters

• resolver – A Resolver instance or None if dnspython is not installed.

• domain – The initial domain under consideration.

• port – The initial port under consideration.

configure_socket()
Set timeout and other options for self.socket.

Meant to be overridden.

connect(host=”, port=0, use_ssl=False, force_starttls=True, disable_starttls=False)
Create a new socket and connect to the server.

Parameters

• host – The name of the desired server for the connection.

• port – Port to connect to on the server.

• use_ssl – Flag indicating if SSL should be used by connecting directly to a port using
SSL. If it is False, the connection will be upgraded to SSL/TLS later, using STARTTLS.
Only use this value for old servers that have specific port for SSL/TLS

TODO fix the comment :param force_starttls: If True, the connection will be aborted if

the server does not initiate a STARTTLS negotiation. If None, the connection will be upgraded
to TLS only if the server initiate the STARTTLS negotiation, otherwise it will connect in clear. If
False it will never upgrade to TLS, even if the server provides it. Use this for example if you’re
on localhost

connection_lost(exception)
On any kind of disconnection, initiated by us or not. This signals the closure of the TCP connection

connection_made(transport)
Called when the TCP connection has been established with the server

data_received(data)
Called when incoming data is received on the socket.

We feed that data to the parser and the see if this produced any XML event. This could trigger one or more
event (a stanza is received, the stream is opened, etc).

default_domain = None
The domain to try when querying DNS records.

default_ns = None
The default namespace of the stream content, not of the stream wrapper itself.

default_port = None
The default port to return when querying DNS records.

del_event_handler(name, pointer)
Remove a function as a handler for an event.

Parameters

• name – The name of the event.

92 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

• pointer – The function to remove as a handler.

del_filter(mode, handler)
Remove an incoming or outgoing filter.

disconnect(wait: float = 2.0, reason: Optional[str] = None, ignore_send_queue: bool = False) →
None

Close the XML stream and wait for an acknowldgement from the server for at most wait seconds. After the
given number of seconds has passed without a response from the server, or when the server successfully
responds with a closure of its own stream, abort() is called. If wait is 0.0, this will call abort() directly
without closing the stream.

Does nothing if we are not connected.

Parameters wait – Time to wait for a response from the server.

disconnect_reason = None
The reason why we are disconnecting from the server

disconnected = None
An asyncio Future being done when the stream is disconnected.

dns_answers = None
A list of DNS results that have not yet been tried.

dns_service = None
The service name to check with DNS SRV records. For example, setting this to 'xmpp-client' would
query the _xmpp-client._tcp service.

end_session_on_disconnect = None
Flag for controlling if the session can be considered ended if the connection is terminated.

eof_received()
When the TCP connection is properly closed by the remote end

event(name, data={})
Manually trigger a custom event.

Parameters

• name – The name of the event to trigger.

• data – Data that will be passed to each event handler. Defaults to an empty dictionary,
but is usually a stanza object.

event_handled(name)
Returns the number of registered handlers for an event.

Parameters name – The name of the event to check.

exception(exception)
Process an unknown exception.

Meant to be overridden.

Parameters exception – An unhandled exception object.

get_dns_records(domain, port=None)
Get the DNS records for a domain.

Parameters

• domain – The domain in question.

• port – If the results don’t include a port, use this one.

6.10. XML Stream 93

Slixmpp Documentation, Release 1.5

get_ssl_context()
Get SSL context.

incoming_filter(xml)
Filter incoming XML objects before they are processed.

Possible uses include remapping namespaces, or correcting elements from sources with incorrect behavior.

Meant to be overridden.

init_parser()
init the XML parser. The parser must always be reset for each new connexion

keyfile = None
Path to a file containing the private key for the selected client certificate to use for authenticating via SASL
EXTERNAL.

namespace_map = None
A mapping of XML namespaces to well-known prefixes.

new_id()
Generate and return a new stream ID in hexadecimal form.

Many stanzas, handlers, or matchers may require unique ID values. Using this method ensures that all new
ID values are unique in this stream.

pick_dns_answer(domain, port=None)
Pick a server and port from DNS answers.

Gets DNS answers if none available. Removes used answer from available answers.

Parameters

• domain – The domain in question.

• port – If the results don’t include a port, use this one.

process(*, forever=True, timeout=None)
Process all the available XMPP events (receiving or sending data on the socket(s), calling various registered
callbacks, calling expired timers, handling signal events, etc). If timeout is None, this function will run
forever. If timeout is a number, this function will return after the given time in seconds.

proxy_config = None
An optional dictionary of proxy settings. It may provide: :host: The host offering proxy services. :port:
The port for the proxy service. :username: Optional username for accessing the proxy. :password: Op-
tional password for accessing the proxy.

reconnect(wait=2.0, reason=’Reconnecting’)
Calls disconnect(), and once we are disconnected (after the timeout, or when the server acknowledgement
is received), call connect()

register_handler(handler, before=None, after=None)
Add a stream event handler that will be executed when a matching stanza is received.

Parameters handler – The BaseHandler derived object to execute.

register_stanza(stanza_class)
Add a stanza object class as a known root stanza.

A root stanza is one that appears as a direct child of the stream’s root element.

Stanzas that appear as substanzas of a root stanza do not need to be registered here. That is done using
register_stanza_plugin() from slixmpp.xmlstream.stanzabase.

94 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

Stanzas that are not registered will not be converted into stanza objects, but may still be processed using
handlers and matchers.

Parameters stanza_class – The top-level stanza object’s class.

remove_handler(name)
Remove any stream event handlers with the given name.

Parameters name – The name of the handler.

remove_stanza(stanza_class)
Remove a stanza from being a known root stanza.

A root stanza is one that appears as a direct child of the stream’s root element.

Stanzas that are not registered will not be converted into stanza objects, but may still be processed using
handlers and matchers.

run_filters()
Background loop that processes stanzas to send.

schedule(name, seconds, callback, args=(), kwargs={}, repeat=False)
Schedule a callback function to execute after a given delay.

Parameters

• name – A unique name for the scheduled callback.

• seconds – The time in seconds to wait before executing.

• callback – A pointer to the function to execute.

• args – A tuple of arguments to pass to the function.

• kwargs – A dictionary of keyword arguments to pass to the function.

• repeat – Flag indicating if the scheduled event should be reset and repeat after executing.

send(data, use_filters=True)
A wrapper for send_raw() for sending stanza objects.

Parameters

• data – The ElementBase stanza to send on the stream.

• use_filters (bool) – Indicates if outgoing filters should be applied to the given
stanza data. Disabling filters is useful when resending stanzas. Defaults to True.

send_raw(data)
Send raw data across the stream.

Parameters data (string) – Any bytes or utf-8 string value.

send_xml(data)
Send an XML object on the stream

Parameters data – The Element XML object to send on the stream.

start_stream_handler(xml)
Perform any initialization actions, such as handshakes, once the stream header has been sent.

Meant to be overridden.

start_tls()
Perform handshakes for TLS.

If the handshake is successful, the XML stream will need to be restarted.

6.10. XML Stream 95

http://docs.python.org/3.4/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

Slixmpp Documentation, Release 1.5

stream_footer = None
The default closing tag for the stream element.

stream_header = None
The default opening tag for the stream element.

stream_ns = None
The namespace of the enveloping stream element.

use_aiodns = None
If set to True, allow using the dnspython DNS library if available. If set to False, the builtin DNS
resolver will be used, even if dnspython is installed.

use_cdata = None
Use CDATA for escaping instead of XML entities. Defaults to False.

use_ipv6 = None
If set to True, attempt to use IPv6.

use_proxy = None
If set to True, attempt to connect through an HTTP proxy based on the settings in proxy_config.

use_ssl = None
Enable connecting to the server directly over SSL, in particular when the service provides two ports: one
for non-SSL traffic and another for SSL traffic.

whitespace_keepalive = None
If True, periodically send a whitespace character over the wire to keep the connection alive. Mainly
useful for connections traversing NAT.

whitespace_keepalive_interval = None
The default interval between keepalive signals when whitespace_keepalive is enabled.

6.11 XML Serialization

Since the XML layer of Slixmpp is based on ElementTree, why not just use the built-in tostring() method?
The answer is that using that method produces ugly results when using namespaces. The tostring() method used
here intelligently hides namespaces when able and does not introduce excessive namespace prefixes:

>>> from slixmpp.xmlstream.tostring import tostring
>>> from xml.etree import ElementTree as ET
>>> xml = ET.fromstring('<foo xmlns="bar"><baz /></foo>')
>>> ET.tostring(xml)
'<ns0:foo xmlns:ns0="bar"><ns0:baz /></foo>'
>>> tostring(xml)
'<foo xmlns="bar"><baz /></foo>'

As a side effect of this namespace hiding, using tostring() may produce unexpected results depending on how
the tostring() method is invoked. For example, when sending XML on the wire, the main XMPP stanzas with
their namespace of jabber:client will not include the namespace because that is already declared by the stream
header. But, if you create a Message instance and dump it to the terminal, the jabber:client namespace will
appear.

slixmpp.xmlstream.tostring(xml=None, xmlns=”, stream=None, outbuffer=”, top_level=False,
open_only=False, namespaces=None)

Serialize an XML object to a Unicode string.

96 Chapter 6. API Reference

http://docs.python.org/3.4/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
http://docs.python.org/3.4/library/xml.etree.elementtree.html#xml.etree.ElementTree.tostring

Slixmpp Documentation, Release 1.5

If an outer xmlns is provided using xmlns, then the current element’s namespace will not be included if it
matches the outer namespace. An exception is made for elements that have an attached stream, and appear at
the stream root.

Parameters

• xml (Element) – The XML object to serialize.

• xmlns (string) – Optional namespace of an element wrapping the XML object.

• stream (XMLStream) – The XML stream that generated the XML object.

• outbuffer (string) – Optional buffer for storing serializations during recursive calls.

• top_level (bool) – Indicates that the element is the outermost element.

• namespaces (set) – Track which namespaces are in active use so that new ones can be
declared when needed.

Return type Unicode string

6.11.1 Escaping Special Characters

In order to prevent errors when sending arbitrary text as the textual content of an XML element, certain characters
must be escaped. These are: &, <, >, ", and '. The default escaping mechanism is to replace those characters with
their equivalent escape entities: &, <, >, ', and ".

In the future, the use of CDATA sections may be allowed to reduce the size of escaped text or for when other XMPP
processing agents do not undertand these entities.

6.12 Core Stanzas

6.12.1 Root Stanza

class slixmpp.stanza.rootstanza.RootStanza(stream=None, xml=None, stype=None,
sto=None, sfrom=None, sid=None, par-
ent=None)

A top-level XMPP stanza in an XMLStream.

The RootStanza class provides a more XMPP specific exception handler than provided by the generic Stanz-
aBase class.

Methods: exception – Overrides StanzaBase.exception

exception(e)
Create and send an error reply.

Typically called when an event handler raises an exception. The error’s type and text content are based on
the exception object’s type and content.

Overrides StanzaBase.exception.

Arguments: e – Exception object

6.12. Core Stanzas 97

http://docs.python.org/3.4/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
http://docs.python.org/3.4/library/stdtypes.html#set

Slixmpp Documentation, Release 1.5

6.12.2 Message Stanza

class slixmpp.stanza.Message(*args, **kwargs)
XMPP’s <message> stanzas are a “push” mechanism to send information to other XMPP entities without re-
quiring a response.

Chat clients will typically use <message> stanzas that have a type of either “chat” or “groupchat”.

When handling a message event, be sure to check if the message is an error response.

Example <message> stanzas:

<message to="user1@example.com" from="user2@example.com">
<body>Hi!</body>

</message>

<message type="groupchat" to="room@conference.example.com">
<body>Hi everyone!</body>

</message>

Stanza Interface:

• body: The main contents of the message.

• subject: An optional description of the message’s contents.

• mucroom: (Read-only) The name of the MUC room that sent the message.

• mucnick: (Read-only) The MUC nickname of message’s sender.

Attributes:

• types: May be one of: normal, chat, headline, groupchat, or error.

chat()
Set the message type to ‘chat’.

del_mucnick()
Dummy method to prevent deletion.

del_mucroom()
Dummy method to prevent deletion.

del_parent_thread()
Delete the message thread’s parent reference.

get_mucnick()
Return the nickname of the MUC user that sent the message.

Read-only stanza interface.

Return type str

get_mucroom()
Return the name of the MUC room where the message originated.

Read-only stanza interface.

Return type str

get_parent_thread()
Return the message thread’s parent thread.

Return type str

98 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

get_type()
Return the message type.

Overrides default stanza interface behavior.

Returns ‘normal’ if no type attribute is present.

Return type str

normal()
Set the message type to ‘normal’.

reply(body=None, clear=True)
Create a message reply.

Overrides StanzaBase.reply.

Sets proper ‘to’ attribute if the message is from a MUC, and adds a message body if one is given.

Parameters

• body (str) – Optional text content for the message.

• clear (bool) – Indicates if existing content should be removed before replying. De-
faults to True.

Return type Message

set_mucnick(value)
Dummy method to prevent modification.

set_mucroom(value)
Dummy method to prevent modification.

set_parent_thread(value)
Add or change the message thread’s parent thread.

Parameters value (str) – identifier of the thread

6.12.3 Presence Stanza

class slixmpp.stanza.Presence(*args, **kwargs)
XMPP’s <presence> stanza allows entities to know the status of other clients and components. Since it is
currently the only multi-cast stanza in XMPP, many extensions add more information to <presence> stanzas
to broadcast to every entry in the roster, such as capabilities, music choices, or locations (XEP-0115: Entity
Capabilities and XEP-0163: Personal Eventing Protocol).

Since <presence> stanzas are broadcast when an XMPP entity changes its status, the bulk of the traffic in an
XMPP network will be from <presence> stanzas. Therefore, do not include more information than necessary in
a status message or within a <presence> stanza in order to help keep the network running smoothly.

Example <presence> stanzas:

<presence />

<presence from="user@example.com">
<show>away</show>
<status>Getting lunch.</status>
<priority>5</priority>

</presence>

<presence type="unavailable" />
(continues on next page)

6.12. Core Stanzas 99

Slixmpp Documentation, Release 1.5

(continued from previous page)

<presence to="user@otherhost.com" type="subscribe" />

Stanza Interface:

• priority: A value used by servers to determine message routing.

• show: The type of status, such as away or available for chat.

• status: Custom, human readable status message.

Attributes:

• types: One of: available, unavailable, error, probe, subscribe, subscribed, unsubscribe, and unsub-
scribed.

• showtypes: One of: away, chat, dnd, and xa.

del_type()
Remove both the type attribute and the <show> element.

get_priority()
Return the value of the <presence> element as an integer.

Return type int

get_type()
Return the value of the <presence> stanza’s type attribute, or the value of the <show> element if valid.

reply(clear=True)
Create a new reply <presence/> stanza from self.

Overrides StanzaBase.reply.

Parameters clear (bool) – Indicates if the stanza contents should be removed before reply-
ing. Defaults to True.

set_priority(value)
Set the entity’s priority value. Some server use priority to determine message routing behavior.

Bot clients should typically use a priority of 0 if the same JID is used elsewhere by a human-interacting
client.

Parameters value (int) – An integer value greater than or equal to 0.

set_show(show)
Set the value of the <show> element.

Parameters show (str) – Must be one of: away, chat, dnd, or xa.

set_type(value)
Set the type attribute’s value, and the <show> element if applicable.

Parameters value (str) – Must be in either self.types or self.showtypes.

6.12.4 IQ Stanza

class slixmpp.stanza.Iq(*args, **kwargs)
XMPP <iq> stanzas, or info/query stanzas, are XMPP’s method of requesting and modifying information, sim-
ilar to HTTP’s GET and POST methods.

100 Chapter 6. API Reference

Slixmpp Documentation, Release 1.5

Each <iq> stanza must have an ‘id’ value which associates the stanza with the response stanza. XMPP entities
must always be given a response <iq> stanza with a type of ‘result’ after sending a stanza of type ‘get’ or ‘set’.

Most uses cases for <iq> stanzas will involve adding a <query> element whose namespace indicates the type
of information desired. However, some custom XMPP applications use <iq> stanzas as a carrier stanza for an
application-specific protocol instead.

Example <iq> Stanzas:

<iq to="user@example.com" type="get" id="314">
<query xmlns="http://jabber.org/protocol/disco#items" />

</iq>

<iq to="user@localhost" type="result" id="17">
<query xmlns='jabber:iq:roster'>

<item jid='otheruser@example.net'
name='John Doe'
subscription='both'>

<group>Friends</group>
</item>

</query>
</iq>

Stanza Interface:

• query: The namespace of the <query> element if one exists.

Attributes:

• types: May be one of: get, set, result, or error.

del_query()
Remove the <query> element.

get_query()
Return the namespace of the <query> element.

Return type str

reply(clear=True)
Create a new <iq> stanza replying to self.

Overrides StanzaBase.reply

Sets the ‘type’ to ‘result’ in addition to the default StanzaBase.reply behavior.

Parameters clear (bool) – Indicates if existing content should be removed before replying.
Defaults to True.

send(callback=None, timeout=None, timeout_callback=None)
Send an <iq> stanza over the XML stream.

A callback handler can be provided that will be executed when the Iq stanza’s result reply is received.

Returns a future which result will be set to the result Iq if it is of type ‘get’ or ‘set’ (when it is received),
or a future with the result set to None if it has another type.

Overrides StanzaBase.send

Parameters

• callback (function) – Optional reference to a stream handler function. Will be
executed when a reply stanza is received.

6.12. Core Stanzas 101

Slixmpp Documentation, Release 1.5

• timeout (int) – The length of time (in seconds) to wait for a response before the time-
out_callback is called, instead of the regular callback

• timeout_callback (function) – Optional reference to a stream handler function.
Will be executed when the timeout expires before a response has been received for the
originally-sent IQ stanza.

Return type asyncio.Future

set_payload(value)
Set the XML contents of the <iq> stanza.

Parameters value (list or XML object) – An XML object or a list of XML objects to
use as the <iq> stanza’s contents

set_query(value)
Add or modify a <query> element.

Query elements are differentiated by their namespace.

Parameters value (str) – The namespace of the <query> element.

unhandled()
Send a feature-not-implemented error if the stanza is not handled.

Overrides StanzaBase.unhandled.

6.13 Plugins

102 Chapter 6. API Reference

CHAPTER 7

Additional Info

7.1 Glossary

event handler A callback function that responds to events raised by XMLStream.event().

stanza object Informally may refer both to classes which extend ElementBase or StanzaBase, and to objects
of such classes.

A stanza object is a wrapper for an XML object which exposes dict like interfaces which may be assigned to,
read from, or deleted.

stanza plugin A stanza object which has been registered as a potential child of another stanza object. The plugin
stanza may accessed through the parent stanza using the plugin’s plugin_attrib as an interface.

stream handler A callback function that accepts stanza objects pulled directly from the XML stream. A stream
handler is encapsulated in a object that includes a Matcher object, and which provides additional semantics.
For example, the Waiter handler wrapper blocks thread execution until a matching stanza is received.

substanza See stanza plugin

7.2 License (MIT)

Copyright (c) 2010 Nathanael C. Fritz

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

103

http://docs.python.org/3.4/library/stdtypes.html#dict

Slixmpp Documentation, Release 1.5

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

7.2.1 Licenses of Bundled Third Party Code

dateutil - Extensions to the standard python 2.3+ datetime module.

Copyright (c) 2003-2011 - Gustavo Niemeyer <gustavo@niemeyer.net>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

fixed_datetime

Copyright (c) 2008, Red Innovation Ltd., Finland All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Red Innovation nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY RED INNOVATION ‘‘AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RED INNOVA-
TION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

104 Chapter 7. Additional Info

mailto:gustavo@niemeyer.net

Slixmpp Documentation, Release 1.5

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OrderedDict - A port of the Python 2.7+ OrderedDict to Python 2.6

Copyright (c) 2009 Raymond Hettinger

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

SUELTA – A PURE-PYTHON SASL CLIENT LIBRARY

This software is subject to “The MIT License”

Copyright 2004-2013 David Alan Cridland

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

python-gnupg: A Python wrapper for the GNU Privacy Guard

Copyright (c) 2008-2012 by Vinay Sajip. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

7.2. License (MIT) 105

Slixmpp Documentation, Release 1.5

• The name(s) of the copyright holder(s) may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

• License (MIT)

• Glossary

• genindex

• modindex

• search

106 Chapter 7. Additional Info

CHAPTER 8

SleekXMPP Credits

Note: Those people made SleekXMPP, so you should not bother them if you have an issue with slixmpp. But it’s still
fair to credit them for their work.

Main Author: Nathan Fritz fritzy@netflint.net, @fritzy

Nathan is also the author of XMPPHP and Seesmic-AS3-XMPP, and a former member of the XMPP Council.

Co-Author: Lance Stout lancestout@gmail.com, @lancestout

Both Fritzy and Lance work for &yet, which specializes in realtime web and XMPP applications.

• contact@andyet.net

• XMPP Consulting

Contributors:

• Brian Beggs (macdiesel)

• Dann Martens (dannmartens)

• Florent Le Coz (louiz)

• Kevin Smith (Kev, http://kismith.co.uk)

• Remko Tronçon (remko, http://el-tramo.be)

• Te-jé Rogers (te-je)

• Thom Nichols (tomstrummer)

107

http://andyet.net/team/fritzy
xmpp:fritzy@netflint.net?message
http://twitter.com/fritzy
http://code.google.com/p/seesmic-as3-xmpp/
http://andyet.net/team/lance
xmpp:lancestout@gmail.com?message
http://twitter.com/lancestout
http://andyet.net
mailto:contact@andyet.net
http://xmppconsulting.com
http://github.com/macdiesel
http://github.com/dannmartens
http://github.com/louiz
http://github.com/Kev
http://kismith.co.uk
http://github.com/remko
http://el-tramo.be
http://github.com/te-je
http://github.com/tomstrummer

Slixmpp Documentation, Release 1.5

108 Chapter 8. SleekXMPP Credits

Python Module Index

s
slixmpp.basexmpp, 67
slixmpp.clientxmpp, 64
slixmpp.componentxmpp, 66
slixmpp.exceptions, 72
slixmpp.jid, 73
slixmpp.stanza, 99
slixmpp.stanza.rootstanza, 97
slixmpp.xmlstream.handler, 87
slixmpp.xmlstream.handler.base, 86
slixmpp.xmlstream.matcher.base, 89
slixmpp.xmlstream.matcher.id, 89
slixmpp.xmlstream.matcher.stanzapath,

89
slixmpp.xmlstream.matcher.xmlmask, 90
slixmpp.xmlstream.matcher.xpath, 89
slixmpp.xmlstream.stanzabase, 73
slixmpp.xmlstream.tostring, 96
slixmpp.xmlstream.xmlstream, 90

109

Slixmpp Documentation, Release 1.5

110 Python Module Index

Index

Symbols
__bool__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 76
__copy__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 76
__delitem__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 77
__eq__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 77
__getitem__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 77
__init__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 78
__iter__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 78
__len__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 78
__ne__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 78
__next__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 78
__repr__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 78
__setitem__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 78
__str__() (slixmpp.xmlstream.stanzabase.ElementBase

method), 79
__weakref__ (slixmpp.xmlstream.stanzabase.ElementBase

attribute), 79
_del_attr() (slixmpp.xmlstream.stanzabase.ElementBase

method), 79
_del_sub() (slixmpp.xmlstream.stanzabase.ElementBase

method), 79
_get_attr() (slixmpp.xmlstream.stanzabase.ElementBase

method), 79
_get_stanza_values()

(slixmpp.xmlstream.stanzabase.ElementBase
method), 79

_get_sub_text() (slixmpp.xmlstream.stanzabase.ElementBase

method), 80
_set_attr() (slixmpp.xmlstream.stanzabase.ElementBase

method), 80
_set_stanza_values()

(slixmpp.xmlstream.stanzabase.ElementBase
method), 80

_set_sub_text() (slixmpp.xmlstream.stanzabase.ElementBase
method), 80

A
abort() (slixmpp.xmlstream.xmlstream.XMLStream

method), 91
add_event_handler()

(slixmpp.xmlstream.xmlstream.XMLStream
method), 91

add_filter() (slixmpp.xmlstream.xmlstream.XMLStream
method), 91

address (slixmpp.xmlstream.xmlstream.XMLStream at-
tribute), 91

api (slixmpp.basexmpp.BaseXMPP attribute), 67
append() (slixmpp.xmlstream.stanzabase.ElementBase

method), 80
appendxml() (slixmpp.xmlstream.stanzabase.ElementBase

method), 80
auto_authorize (slixmpp.basexmpp.BaseXMPP at-

tribute), 67
auto_subscribe (slixmpp.basexmpp.BaseXMPP at-

tribute), 67

B
BaseHandler (class in

slixmpp.xmlstream.handler.base), 86
BaseXMPP, 55, 57
BaseXMPP (class in slixmpp.basexmpp), 67
bool_interfaces (slixmpp.xmlstream.stanzabase.ElementBase

attribute), 81
boundjid (slixmpp.basexmpp.BaseXMPP attribute), 67

C
ca_certs (slixmpp.xmlstream.xmlstream.XMLStream

111

Slixmpp Documentation, Release 1.5

attribute), 91
Callback (class in slixmpp.xmlstream.handler), 87
cancel_connection_attempt()

(slixmpp.xmlstream.xmlstream.XMLStream
method), 91

certfile (slixmpp.xmlstream.xmlstream.XMLStream
attribute), 91

changed_status, 59
changed_subscription, 59
chat() (slixmpp.stanza.Message method), 98
chatstate_active, 59
chatstate_composing, 59
chatstate_gone, 59
chatstate_inactive, 60
chatstate_paused, 60
check_delete() (slixmpp.xmlstream.handler.base.BaseHandler

method), 86
check_delete() (slixmpp.xmlstream.handler.Waiter

method), 88
ciphers (slixmpp.xmlstream.xmlstream.XMLStream at-

tribute), 91
clear() (slixmpp.xmlstream.stanzabase.ElementBase

method), 81
client_roster (slixmpp.basexmpp.BaseXMPP at-

tribute), 67
ClientXMPP, 55, 57
ClientXMPP (class in slixmpp.clientxmpp), 64
ComponentXMPP, 55, 57
ComponentXMPP (class in slixmpp.componentxmpp),

66
configure_dns() (slixmpp.xmlstream.xmlstream.XMLStream

method), 91
configure_socket()

(slixmpp.xmlstream.xmlstream.XMLStream
method), 92

connect() (slixmpp.clientxmpp.ClientXMPP method),
65

connect() (slixmpp.componentxmpp.ComponentXMPP
method), 66

connect() (slixmpp.xmlstream.xmlstream.XMLStream
method), 92

connected, 60
connection_failed, 60
connection_lost()

(slixmpp.xmlstream.xmlstream.XMLStream
method), 92

connection_made()
(slixmpp.xmlstream.xmlstream.XMLStream
method), 92

CoroutineCallback (class in
slixmpp.xmlstream.handler), 87

D
data_received() (slixmpp.xmlstream.xmlstream.XMLStream

method), 92
default_domain (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 92
default_ns (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 92
default_port (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 92
del_event_handler()

(slixmpp.xmlstream.xmlstream.XMLStream
method), 92

del_filter() (slixmpp.xmlstream.xmlstream.XMLStream
method), 93

del_mucnick() (slixmpp.stanza.Message method), 98
del_mucroom() (slixmpp.stanza.Message method), 98
del_parent_thread() (slixmpp.stanza.Message

method), 98
del_payload() (slixmpp.xmlstream.stanzabase.StanzaBase

method), 85
del_query() (slixmpp.stanza.Iq method), 101
del_roster_item()

(slixmpp.clientxmpp.ClientXMPP method),
65

del_type() (slixmpp.stanza.Presence method), 100
disco_info, 60
disco_items, 60
disconnect() (slixmpp.xmlstream.xmlstream.XMLStream

method), 93
disconnect_reason

(slixmpp.xmlstream.xmlstream.XMLStream
attribute), 93

disconnected, 60
disconnected (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 93
dns_answers (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 93
dns_service (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 93

E
ElementBase (class in

slixmpp.xmlstream.stanzabase), 75
enable() (slixmpp.xmlstream.stanzabase.ElementBase

method), 81
end_session_on_disconnect

(slixmpp.xmlstream.xmlstream.XMLStream
attribute), 93

entity_time, 60
eof_received() (slixmpp.xmlstream.xmlstream.XMLStream

method), 93
error() (slixmpp.xmlstream.stanzabase.StanzaBase

method), 85
event handler, 103
event() (slixmpp.xmlstream.xmlstream.XMLStream

method), 93

112 Index

Slixmpp Documentation, Release 1.5

event_handled() (slixmpp.xmlstream.xmlstream.XMLStream
method), 93

exception() (slixmpp.basexmpp.BaseXMPP
method), 67

exception() (slixmpp.stanza.rootstanza.RootStanza
method), 97

exception() (slixmpp.xmlstream.stanzabase.StanzaBase
method), 85

exception() (slixmpp.xmlstream.xmlstream.XMLStream
method), 93

F
failed_auth, 60
format() (slixmpp.exceptions.XMPPError method), 72
fulljid (slixmpp.basexmpp.BaseXMPP attribute), 67

G
get() (slixmpp.basexmpp.BaseXMPP method), 67
get() (slixmpp.xmlstream.stanzabase.ElementBase

method), 81
get_dns_records()

(slixmpp.xmlstream.xmlstream.XMLStream
method), 93

get_from() (slixmpp.xmlstream.stanzabase.StanzaBase
method), 85

get_mucnick() (slixmpp.stanza.Message method), 98
get_mucroom() (slixmpp.stanza.Message method), 98
get_parent_thread() (slixmpp.stanza.Message

method), 98
get_payload() (slixmpp.xmlstream.stanzabase.StanzaBase

method), 85
get_priority() (slixmpp.stanza.Presence method),

100
get_query() (slixmpp.stanza.Iq method), 101
get_roster() (slixmpp.clientxmpp.ClientXMPP

method), 65
get_ssl_context()

(slixmpp.xmlstream.xmlstream.XMLStream
method), 93

get_stanza_values()
(slixmpp.xmlstream.stanzabase.ElementBase
method), 81

get_to() (slixmpp.xmlstream.stanzabase.StanzaBase
method), 85

get_type() (slixmpp.stanza.Message method), 98
get_type() (slixmpp.stanza.Presence method), 100
gmail_messages, 60
gmail_notify, 61
got_offline, 61
got_online, 61
groupchat_direct_invite, 61
groupchat_invite, 61
groupchat_message, 61
groupchat_presence, 61

groupchat_subject, 61

I
incoming_filter()

(slixmpp.componentxmpp.ComponentXMPP
method), 66

incoming_filter()
(slixmpp.xmlstream.xmlstream.XMLStream
method), 94

init_parser() (slixmpp.xmlstream.xmlstream.XMLStream
method), 94

init_plugin() (slixmpp.xmlstream.stanzabase.ElementBase
method), 81

interfaces (slixmpp.xmlstream.stanzabase.ElementBase
attribute), 81

Iq (class in slixmpp.stanza), 100
iq (slixmpp.exceptions.IqError attribute), 72
iq (slixmpp.exceptions.IqTimeout attribute), 72
Iq() (slixmpp.basexmpp.BaseXMPP method), 67
IqError, 72
IqTimeout, 72
is_component (slixmpp.basexmpp.BaseXMPP at-

tribute), 68
is_extension (slixmpp.xmlstream.stanzabase.ElementBase

attribute), 81
iterables (slixmpp.xmlstream.stanzabase.ElementBase

attribute), 82

J
JID (class in slixmpp.jid), 73
jid (slixmpp.basexmpp.BaseXMPP attribute), 68

K
keyfile (slixmpp.xmlstream.xmlstream.XMLStream at-

tribute), 94
keys() (slixmpp.xmlstream.stanzabase.ElementBase

method), 82
killed, 61

L
lang_interfaces (slixmpp.xmlstream.stanzabase.ElementBase

attribute), 82
last_activity, 62

M
make_iq() (slixmpp.basexmpp.BaseXMPP method),

68
make_iq_error() (slixmpp.basexmpp.BaseXMPP

method), 68
make_iq_get() (slixmpp.basexmpp.BaseXMPP

method), 68
make_iq_query() (slixmpp.basexmpp.BaseXMPP

method), 68

Index 113

Slixmpp Documentation, Release 1.5

make_iq_result() (slixmpp.basexmpp.BaseXMPP
method), 69

make_iq_set() (slixmpp.basexmpp.BaseXMPP
method), 69

make_message() (slixmpp.basexmpp.BaseXMPP
method), 69

make_presence() (slixmpp.basexmpp.BaseXMPP
method), 69

make_query_roster()
(slixmpp.basexmpp.BaseXMPP method),
70

match() (slixmpp.xmlstream.handler.base.BaseHandler
method), 86

match() (slixmpp.xmlstream.matcher.base.MatcherBase
method), 89

match() (slixmpp.xmlstream.matcher.id.MatcherId
method), 89

match() (slixmpp.xmlstream.matcher.stanzapath.StanzaPath
method), 89

match() (slixmpp.xmlstream.matcher.xmlmask.MatchXMLMask
method), 90

match() (slixmpp.xmlstream.matcher.xpath.MatchXPath
method), 89

match() (slixmpp.xmlstream.stanzabase.ElementBase
method), 82

MatcherBase (class in
slixmpp.xmlstream.matcher.base), 89

MatcherId (class in slixmpp.xmlstream.matcher.id), 89
MatchXMLMask (class in

slixmpp.xmlstream.matcher.xmlmask), 90
MatchXPath (class in

slixmpp.xmlstream.matcher.xpath), 89
max_redirects (slixmpp.basexmpp.BaseXMPP at-

tribute), 70
message, 62
Message (class in slixmpp.stanza), 98
Message() (slixmpp.basexmpp.BaseXMPP method),

67
message_error, 62
message_form, 62
message_xform, 62
muc::[room]::got_offline, 62
muc::[room]::got_online, 62
muc::[room]::message, 62
muc::[room]::presence, 62

N
name (slixmpp.xmlstream.handler.base.BaseHandler at-

tribute), 86
name (slixmpp.xmlstream.stanzabase.ElementBase at-

tribute), 82
namespace (slixmpp.xmlstream.stanzabase.ElementBase

attribute), 82

namespace (slixmpp.xmlstream.stanzabase.StanzaBase
attribute), 85

namespace_map (slixmpp.xmlstream.xmlstream.XMLStream
attribute), 94

new_id() (slixmpp.xmlstream.xmlstream.XMLStream
method), 94

next() (slixmpp.xmlstream.stanzabase.ElementBase
method), 82

normal() (slixmpp.stanza.Message method), 99

O
overrides (slixmpp.xmlstream.stanzabase.ElementBase

attribute), 82

P
parent (slixmpp.xmlstream.stanzabase.ElementBase

attribute), 82
pick_dns_answer()

(slixmpp.xmlstream.xmlstream.XMLStream
method), 94

plugin (slixmpp.basexmpp.BaseXMPP attribute), 70
plugin_attrib (slixmpp.xmlstream.stanzabase.ElementBase

attribute), 82
plugin_attrib_map

(slixmpp.xmlstream.stanzabase.ElementBase
attribute), 83

plugin_config (slixmpp.basexmpp.BaseXMPP at-
tribute), 70

plugin_iterables (slixmpp.xmlstream.stanzabase.ElementBase
attribute), 83

plugin_multi_attrib
(slixmpp.xmlstream.stanzabase.ElementBase
attribute), 83

plugin_overrides (slixmpp.xmlstream.stanzabase.ElementBase
attribute), 83

plugin_tag_map (slixmpp.xmlstream.stanzabase.ElementBase
attribute), 83

plugin_whitelist (slixmpp.basexmpp.BaseXMPP
attribute), 70

plugins (slixmpp.xmlstream.stanzabase.ElementBase
attribute), 83

pop() (slixmpp.xmlstream.stanzabase.ElementBase
method), 83

prerun() (slixmpp.xmlstream.handler.base.BaseHandler
method), 86

prerun() (slixmpp.xmlstream.handler.Callback
method), 87

prerun() (slixmpp.xmlstream.handler.CoroutineCallback
method), 88

prerun() (slixmpp.xmlstream.handler.Waiter method),
88

Presence (class in slixmpp.stanza), 99
Presence() (slixmpp.basexmpp.BaseXMPP method),

67

114 Index

Slixmpp Documentation, Release 1.5

presence_available, 62
presence_error, 63
presence_form, 63
presence_probe, 63
presence_subscribe, 63
presence_subscribed, 63
presence_unavailable, 63
presence_unsubscribe, 63
presence_unsubscribed, 63
process() (slixmpp.basexmpp.BaseXMPP method),

70
process() (slixmpp.xmlstream.xmlstream.XMLStream

method), 94
proxy_config (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 94

R
reconnect() (slixmpp.xmlstream.xmlstream.XMLStream

method), 94
register_feature()

(slixmpp.clientxmpp.ClientXMPP method),
65

register_handler()
(slixmpp.xmlstream.xmlstream.XMLStream
method), 94

register_plugin() (slixmpp.basexmpp.BaseXMPP
method), 70

register_plugins()
(slixmpp.basexmpp.BaseXMPP method),
70

register_stanza()
(slixmpp.xmlstream.xmlstream.XMLStream
method), 94

register_stanza_plugin() (in module
slixmpp.xmlstream.stanzabase), 75

remove_handler() (slixmpp.xmlstream.xmlstream.XMLStream
method), 95

remove_stanza() (slixmpp.xmlstream.xmlstream.XMLStream
method), 95

reply() (slixmpp.stanza.Iq method), 101
reply() (slixmpp.stanza.Message method), 99
reply() (slixmpp.stanza.Presence method), 100
reply() (slixmpp.xmlstream.stanzabase.StanzaBase

method), 85
requested_jid (slixmpp.basexmpp.BaseXMPP at-

tribute), 70
resource (slixmpp.basexmpp.BaseXMPP attribute), 70
RootStanza (class in slixmpp.stanza.rootstanza), 97
roster (slixmpp.basexmpp.BaseXMPP attribute), 70
roster_update, 63
run() (slixmpp.xmlstream.handler.base.BaseHandler

method), 86
run() (slixmpp.xmlstream.handler.Callback method),

87

run() (slixmpp.xmlstream.handler.CoroutineCallback
method), 88

run() (slixmpp.xmlstream.handler.Waiter method), 88
run_filters() (slixmpp.xmlstream.xmlstream.XMLStream

method), 95

S
schedule() (slixmpp.xmlstream.xmlstream.XMLStream

method), 95
send() (slixmpp.stanza.Iq method), 101
send() (slixmpp.xmlstream.stanzabase.StanzaBase

method), 85
send() (slixmpp.xmlstream.xmlstream.XMLStream

method), 95
send_message() (slixmpp.basexmpp.BaseXMPP

method), 70
send_presence() (slixmpp.basexmpp.BaseXMPP

method), 71
send_presence_subscription()

(slixmpp.basexmpp.BaseXMPP method),
71

send_raw() (slixmpp.xmlstream.xmlstream.XMLStream
method), 95

send_xml() (slixmpp.xmlstream.xmlstream.XMLStream
method), 95

sent_presence, 64
sentpresence (slixmpp.basexmpp.BaseXMPP at-

tribute), 71
server (slixmpp.basexmpp.BaseXMPP attribute), 71
session_end, 64
session_start, 64
set_from() (slixmpp.xmlstream.stanzabase.StanzaBase

method), 85
set_jid() (slixmpp.basexmpp.BaseXMPP method),

71
set_mucnick() (slixmpp.stanza.Message method), 99
set_mucroom() (slixmpp.stanza.Message method), 99
set_parent_thread() (slixmpp.stanza.Message

method), 99
set_payload() (slixmpp.stanza.Iq method), 102
set_payload() (slixmpp.xmlstream.stanzabase.StanzaBase

method), 86
set_priority() (slixmpp.stanza.Presence method),

100
set_query() (slixmpp.stanza.Iq method), 102
set_show() (slixmpp.stanza.Presence method), 100
set_stanza_values()

(slixmpp.xmlstream.stanzabase.ElementBase
method), 83

set_to() (slixmpp.xmlstream.stanzabase.StanzaBase
method), 86

set_type() (slixmpp.stanza.Presence method), 100
set_type() (slixmpp.xmlstream.stanzabase.StanzaBase

method), 86

Index 115

Slixmpp Documentation, Release 1.5

setDefaultNS() (slixmpp.xmlstream.matcher.xmlmask.MatchXMLMask
method), 90

setup() (slixmpp.xmlstream.stanzabase.ElementBase
method), 83

slixmpp.basexmpp (module), 67
slixmpp.clientxmpp (module), 64
slixmpp.componentxmpp (module), 66
slixmpp.exceptions (module), 72
slixmpp.jid (module), 73
slixmpp.stanza (module), 98–100
slixmpp.stanza.rootstanza (module), 97
slixmpp.xmlstream.handler (module), 87
slixmpp.xmlstream.handler.base (module),

86
slixmpp.xmlstream.matcher.base (module),

89
slixmpp.xmlstream.matcher.id (module), 89
slixmpp.xmlstream.matcher.stanzapath

(module), 89
slixmpp.xmlstream.matcher.xmlmask (mod-

ule), 90
slixmpp.xmlstream.matcher.xpath (module),

89
slixmpp.xmlstream.stanzabase (module), 73
slixmpp.xmlstream.tostring (module), 96
slixmpp.xmlstream.xmlstream (module), 90
socket_error, 64
stanza (slixmpp.basexmpp.BaseXMPP attribute), 71
stanza object, 103
stanza plugin, 103
StanzaBase (class in slixmpp.xmlstream.stanzabase),

84
StanzaPath (class in

slixmpp.xmlstream.matcher.stanzapath), 89
start_stream_handler()

(slixmpp.basexmpp.BaseXMPP method),
71

start_stream_handler()
(slixmpp.componentxmpp.ComponentXMPP
method), 66

start_stream_handler()
(slixmpp.xmlstream.xmlstream.XMLStream
method), 95

start_tls() (slixmpp.xmlstream.xmlstream.XMLStream
method), 95

stream (slixmpp.xmlstream.handler.base.BaseHandler
attribute), 87

stream handler, 103
stream_error, 64
stream_footer (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 95
stream_header (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 96
stream_id (slixmpp.basexmpp.BaseXMPP attribute),

71
stream_ns (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 96
sub_interfaces (slixmpp.xmlstream.stanzabase.ElementBase

attribute), 84
substanza, 103

T
tag (slixmpp.xmlstream.stanzabase.ElementBase at-

tribute), 84
tag_name() (slixmpp.xmlstream.stanzabase.ElementBase

class method), 84
tostring() (in module slixmpp.xmlstream), 96

U
unescape() (slixmpp.jid.JID method), 73
unhandled() (slixmpp.stanza.Iq method), 102
unhandled() (slixmpp.xmlstream.stanzabase.StanzaBase

method), 86
update_roster() (slixmpp.clientxmpp.ClientXMPP

method), 65
use_aiodns (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 96
use_cdata (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 96
use_ipv6 (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 96
use_message_ids (slixmpp.basexmpp.BaseXMPP

attribute), 71
use_origin_id (slixmpp.basexmpp.BaseXMPP at-

tribute), 72
use_presence_ids (slixmpp.basexmpp.BaseXMPP

attribute), 72
use_proxy (slixmpp.xmlstream.xmlstream.XMLStream

attribute), 96
use_ssl (slixmpp.xmlstream.xmlstream.XMLStream at-

tribute), 96
username (slixmpp.basexmpp.BaseXMPP attribute), 72

V
values (slixmpp.xmlstream.stanzabase.ElementBase

attribute), 84

W
wait() (slixmpp.xmlstream.handler.Waiter method), 88
Waiter (class in slixmpp.xmlstream.handler), 88
whitespace_keepalive

(slixmpp.xmlstream.xmlstream.XMLStream
attribute), 96

whitespace_keepalive_interval
(slixmpp.xmlstream.xmlstream.XMLStream
attribute), 96

116 Index

Slixmpp Documentation, Release 1.5

X
xml (slixmpp.xmlstream.stanzabase.ElementBase at-

tribute), 84
xml_ns (slixmpp.xmlstream.stanzabase.ElementBase

attribute), 84
XMLStream, 55, 57
XMLStream (class in slixmpp.xmlstream.xmlstream), 90
XMPPError, 72

Index 117

	Here’s your first Slixmpp Bot:
	To read if you come from SleekXMPP
	Getting Started (with Examples)
	Tutorials, FAQs, and How To Guides
	Slixmpp Architecture and Design
	API Reference
	Additional Info
	SleekXMPP Credits
	Python Module Index
	Index

